Câu hỏi:
21/06/2024 207Trong không gian với hệ tọa độ \[Oxyz\] cho điểm \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}.\) Đường thẳng qua \(A\), cắt trục \[Oy\] và vuông góc với \(d\) có phương trình là
Quảng cáo
Trả lời:
Gọi \(M\left( {0\,;\,\,y\,;\,\,0} \right) \in Oy:\overrightarrow {AM} = \left( { - 1\,;\,\,y - 1\,;\,\, - 1} \right)\).
Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow {{u_d}} = \left( {1\,;\,\,2\,;\,\,1} \right)\).
Gọi \(\Delta \) là đường thẳng đi qua \(A\) cắt trục \[Oy\] tại \(M\).
Do \(\Delta \bot d\) nên \(\overrightarrow {AM} \cdot \overrightarrow {{u_d}} = 0 \Leftrightarrow - 1 + 2\left( {y - 1} \right) - 1 = 0 \Leftrightarrow y = 2\).
Đường thẳng \(\Delta \) đi qua \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và nhận \(\overrightarrow {{u_\Delta }} = \left( {1\,;\,\, - 1\,;\,\,1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 - t}\\{z = 1 + t}\end{array}} \right.\).
Mà điểm \(N\left( { - 1\,;\,\,3\,;\,\, - 1} \right) \in \Delta \) nên đường thẳng \(\Delta \) có phương trình \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + t}\\{y = 3 - t}\\{z = - 1 + t}\end{array}} \right.\).
Chọn C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.