Câu hỏi:

21/06/2024 135

Biết \[x\,,\,\,y\] là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2\left( {{x^2} - 2x} \right) + \sqrt {y + 1}  = 0}\\{3\left( {{x^2} - 2x} \right) - 2\sqrt {y + 1}  =  - 7}\end{array}} \right..\) Để \(mx + 2y = 4\) thì giá trị \(m\) nào sau đây thỏa mãn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(\left\{ {\begin{array}{*{20}{l}}{a = {x^2} - 2x}\\{b = \sqrt {y + 1} }\end{array}} \right.\) .

Hệ phương trình đã cho trở thành \(\left\{ {\begin{array}{*{20}{l}}{2a + b = 0}\\{3a - 2b =  - 7}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 1}\\{b = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} - 2x =  - 1}\\{\sqrt {y + 1}  = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\end{array}} \right.} \right.} \right..\)

Do đó \(m + 6 = 4 \Leftrightarrow m =  - 2.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Parabol có dạng \((P):y = a{x^2}\)

\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)

Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)

Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

Đáp án: 251.

Lời giải

Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.

Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne  - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m <  - 2}\\{m > 5}\end{array}} \right.}\\{m \ne  - 11}\end{array}} \right.} \right.} \right.\).

Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP