Câu hỏi:

21/06/2024 523

Cho lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có \(AA' = 1\), \(\tan \left( {\widehat {\left( {A'BD} \right),\,\,\left( {ABB'A'} \right)}} \right) = 2.\) Thể tích của khối lăng trụ \(ABCD.A'B'C'D'\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {ABB'A'} \right).\)

Gọi \(I\) là hình chiếu của \(D\) lên \(A'B\,,\,\,O\) là tâm của hình vuông \(ABCD.\)

Ta có \(\left\{ \begin{array}{l}DA \bot \left( {ABB'A'} \right)\\\left( {ABB'A'} \right) \cap \left( {A'BD} \right) = A'B\end{array} \right. \Rightarrow \alpha  = \widehat {DIA}.\)

Ta có \(\tan \alpha  = 2 \Rightarrow \sin \alpha  = \frac{2}{{\sqrt 5 }} \Rightarrow \frac{{DA}}{{DI}} = \frac{2}{{\sqrt 5 }}.\)

Giả sử cạnh đáy của lăng trụ là \[x.\]

Ta có \(A'D = A'B = \sqrt {{x^2} + 1} \,,\,\,BD = x\sqrt 2 ,\,\,A'O = \frac{{\sqrt {{x^2} + 2} }}{2}.\)

Diện tích tam giác \(A'BD\) là \({S_{A'BD}} = \frac{1}{2} \cdot A'O \cdot BD = \frac{1}{2}DI \cdot A'B \Rightarrow A'O \cdot BD = DI \cdot A'B\)

\( \Rightarrow DI = \frac{{A'O \cdot BD}}{{A'B}} = \frac{{\sqrt {{x^2} + 2}  \cdot x}}{{\sqrt {{x^2} + 1} }}\)\( \Rightarrow x:\frac{{\sqrt {{x^2} + 2}  \cdot x}}{{\sqrt {{x^2} + 1} }} = \frac{2}{{\sqrt 5 }}\)

\( \Leftrightarrow \frac{{\sqrt {{x^2} + 1} }}{{\sqrt {{x^2} + 2} }} = \frac{2}{{\sqrt 5 }} \Leftrightarrow \frac{{{x^2} + 1}}{{{x^2} + 2}} = \frac{4}{5} \Leftrightarrow x = \sqrt 3 \)\( \Rightarrow {S_{ABCD}} = 3\).

Vậy thể tích khối lăng trụ \(ABCD.A'B'C'D'\) là \(V = {S_{ABCD}} \cdot AA' = 3 \cdot 1 = 3.\) Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Parabol có dạng \((P):y = a{x^2}\)

\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)

Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)

Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

Đáp án: 251.

Lời giải

Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.

Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne  - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m <  - 2}\\{m > 5}\end{array}} \right.}\\{m \ne  - 11}\end{array}} \right.} \right.} \right.\).

Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Sông nào sau đây có mùa lũ vào thu-đông? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Khó khăn lớn nhất của Đông Nam Bộ trong phát triển nông nghiệp là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay