Câu hỏi:
13/07/2024 78Trong không gian với hệ tọa độ \[Oxyz\] cho \(A\left( { - 3\,;\,\,1\,;\,\,1} \right),\,\,B\left( {1\,;\,\, - 1\,;\,\,5} \right)\) và mặt phẳng \((P):2x - y + 2z + 11 = 0.\) Mặt cầu \(\left( S \right)\) đi qua hai điểm \[A,\,\,B\] và tiếp xúc với \(\left( P \right)\) tại điểm C. Biết \(C\) luôn thuộc một đường tròn \[\left( T \right)\] cố định. Bán kính \(r\) của đường tròn \[\left( T \right)\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {AB} = \left( {4\,;\,\, - 2\,;\,\,4} \right)\) và mặt phẳng \((P)\) có vectơ pháp tuyến \(\vec n = \left( {2\,;\,\, - 1\,;\,\,2} \right).\) Do đó \(AB \bot (P).\)
Giả sử mặt cầu \((S)\) có phương trình \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0.\)
Mặt cầu \((S)\) đi qua hai điểm A, B nên ta có
\(\left\{ {\begin{array}{*{20}{l}}{9 + 1 + 1 + 6a - 2b - 2c + d = 0}\\{1 + 1 + 25 - 2a + 2b - 10c + d = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{6a - 2b - 2c + d = - 11}\\{2a - 2b + 10c - d = 27}\end{array}} \right.} \right.\).
Suy ra \(8a - 4b + 8c = 16 \Leftrightarrow 2a - b + 2c = 4.\)
Mặt cầu \((S)\) tiếp xúc với \((P)\) nên ta có
\(d\left( {I,\,\,\left( P \right)} \right) = \frac{{\left| {2a - b + 2c + 11} \right|}}{3} = 5.\)
Ta có \(\overrightarrow {AB} = \left( {4\,;\,\, - 2\,;\,\,4} \right) \Rightarrow AB = \sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} = 6.\)
Gọi \(M\) là trung điểm của \[AB\] ta có
\(d\left( {C\,,\,\,AB} \right) = IM = \sqrt {{5^2} - {3^2}} = 4.\)Vậy \(C\) luôn thuộc một đường tròn \(\left( T \right)\) cố định có bán kính \(r = 4.\)
Đáp án: 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?
Câu 2:
Câu 3:
Câu 5:
Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).
Câu 6:
Ông Khoa muốn xây dựng một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng \[288{\rm{ }}{m^3}.\] Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là \[500\,\,000\] đồng/\[{m^2}.\] Nếu ông Khoa biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi ông Khoa phải trả chi phí thấp nhất bao nhiêu triệu đồng để xây dựng bế đó (biết độ dày thành bể và đáy bể không đáng kể)?
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!