Câu hỏi:
13/07/2024 195Trong không gian với hệ tọa độ \[Oxyz\] cho \(A\left( { - 3\,;\,\,1\,;\,\,1} \right),\,\,B\left( {1\,;\,\, - 1\,;\,\,5} \right)\) và mặt phẳng \((P):2x - y + 2z + 11 = 0.\) Mặt cầu \(\left( S \right)\) đi qua hai điểm \[A,\,\,B\] và tiếp xúc với \(\left( P \right)\) tại điểm C. Biết \(C\) luôn thuộc một đường tròn \[\left( T \right)\] cố định. Bán kính \(r\) của đường tròn \[\left( T \right)\] là
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {AB} = \left( {4\,;\,\, - 2\,;\,\,4} \right)\) và mặt phẳng \((P)\) có vectơ pháp tuyến \(\vec n = \left( {2\,;\,\, - 1\,;\,\,2} \right).\) Do đó \(AB \bot (P).\)
Giả sử mặt cầu \((S)\) có phương trình \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0.\)
Mặt cầu \((S)\) đi qua hai điểm A, B nên ta có
\(\left\{ {\begin{array}{*{20}{l}}{9 + 1 + 1 + 6a - 2b - 2c + d = 0}\\{1 + 1 + 25 - 2a + 2b - 10c + d = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{6a - 2b - 2c + d = - 11}\\{2a - 2b + 10c - d = 27}\end{array}} \right.} \right.\).
Suy ra \(8a - 4b + 8c = 16 \Leftrightarrow 2a - b + 2c = 4.\)
Mặt cầu \((S)\) tiếp xúc với \((P)\) nên ta có
\(d\left( {I,\,\,\left( P \right)} \right) = \frac{{\left| {2a - b + 2c + 11} \right|}}{3} = 5.\)
Ta có \(\overrightarrow {AB} = \left( {4\,;\,\, - 2\,;\,\,4} \right) \Rightarrow AB = \sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} = 6.\)
Gọi \(M\) là trung điểm của \[AB\] ta có
\(d\left( {C\,,\,\,AB} \right) = IM = \sqrt {{5^2} - {3^2}} = 4.\)Vậy \(C\) luôn thuộc một đường tròn \(\left( T \right)\) cố định có bán kính \(r = 4.\)
Đáp án: 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).
Câu 2:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?
Câu 3:
Câu 4:
Câu 6:
Cho hàm số \(f\left( x \right) = 2\left| {x - 1} \right|.\) Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 2 \right) + F\left( 0 \right) = 5.\) Giá trị của biểu thức \(P = F\left( 3 \right) + F\left( { - 2} \right)\) bằng
Câu 7:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận