Câu hỏi:

21/06/2024 551

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \frac{1}{2}{x^2} - 2x + \frac{3}{2}\) và \(f\left( 0 \right) = 0.\) Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 2021\,;\,\,2022} \right)\) để hàm số \[g\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\] có đúng 3 điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(g'\left( x \right) = \frac{{{{\left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}^\prime } \cdot \left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}}{{\left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|}}\).

Suy ra \(g'\left( x \right) = \frac{{2f'\left( x \right) \cdot \left[ {f\left( x \right) + 1} \right] \cdot \left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}}{{\left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f'\left( x \right) = 0}\\{f\left( x \right) + 1 = 0}\\{{f^2}\left( x \right) + f\left( x \right) + m = 0}\end{array}} \right..\)

Dễ thấy \(f'\left( x \right) = 0\) có hai nghiệm là \(x = 1\,;\,\,x = 3.\)

Và \[f\left( x \right) = \int {f'\left( x \right)\,} {\rm{d}}x = \frac{{{x^3}}}{6} - {x^2} + \frac{3}{2}x + C\] mà \(f\left( 0 \right) = 0 \Rightarrow C = 0.\)

Do đó phương trình \(f\left( x \right) + 1 = \frac{{{x^3}}}{6} - {x^2} + \frac{3}{2}x + 1 = 0\) có nghiệm duy nhất.

Yêu cầu bài toán \( \Leftrightarrow (*)\) vô nghiệm hoặc có nghiệm kép \( \Leftrightarrow \Delta  = 1 - 4m \le 0 \Leftrightarrow m \ge \frac{1}{4}.\)

Mà \(m \in \mathbb{Z}\) và \(m \in \left( { - 2021\,;\,\,2022} \right)\) suy ra \(m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,2021} \right\}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Parabol có dạng \((P):y = a{x^2}\)

\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)

Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)

Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)

Đáp án: 251.

Lời giải

Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.

Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne  - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m <  - 2}\\{m > 5}\end{array}} \right.}\\{m \ne  - 11}\end{array}} \right.} \right.} \right.\).

Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP