Câu hỏi:
21/06/2024 551Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \frac{1}{2}{x^2} - 2x + \frac{3}{2}\) và \(f\left( 0 \right) = 0.\) Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 2021\,;\,\,2022} \right)\) để hàm số \[g\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\] có đúng 3 điểm cực trị?
Quảng cáo
Trả lời:
Ta có \(g'\left( x \right) = \frac{{{{\left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}^\prime } \cdot \left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}}{{\left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|}}\).
Suy ra \(g'\left( x \right) = \frac{{2f'\left( x \right) \cdot \left[ {f\left( x \right) + 1} \right] \cdot \left[ {{f^2}\left( x \right) + f\left( x \right) + m} \right]}}{{\left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f'\left( x \right) = 0}\\{f\left( x \right) + 1 = 0}\\{{f^2}\left( x \right) + f\left( x \right) + m = 0}\end{array}} \right..\)
Dễ thấy \(f'\left( x \right) = 0\) có hai nghiệm là \(x = 1\,;\,\,x = 3.\)
Và \[f\left( x \right) = \int {f'\left( x \right)\,} {\rm{d}}x = \frac{{{x^3}}}{6} - {x^2} + \frac{3}{2}x + C\] mà \(f\left( 0 \right) = 0 \Rightarrow C = 0.\)
Do đó phương trình \(f\left( x \right) + 1 = \frac{{{x^3}}}{6} - {x^2} + \frac{3}{2}x + 1 = 0\) có nghiệm duy nhất.
Yêu cầu bài toán \( \Leftrightarrow (*)\) vô nghiệm hoặc có nghiệm kép \( \Leftrightarrow \Delta = 1 - 4m \le 0 \Leftrightarrow m \ge \frac{1}{4}.\)
Mà \(m \in \mathbb{Z}\) và \(m \in \left( { - 2021\,;\,\,2022} \right)\) suy ra \(m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,2021} \right\}.\) Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.