Câu hỏi:
21/06/2024 279
Cho mặt phẳng \((P):x + y - 3z + 7 = 0\) và ba điểm \(A\left( {2\,;\,\, - 1\,;\,\,0} \right)\,,\)\(B\left( {0\,;\,\, - 1\,;\,\,2} \right),\)\(C\left( {2\,;\,\,3\,;\,\, - 1} \right).\) Biết điểm \(M\left( {{x_0}\,;\,\,{y_0}\,;\,\,{z_0}} \right)\) thuộc mặt phẳng \((P)\) sao cho \(M{A^2} + 3M{B^2} - 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó tổng \(T = {x_0} + 3{y_0} - 2{z_0}\) bằng bao nhiêu?
Cho mặt phẳng \((P):x + y - 3z + 7 = 0\) và ba điểm \(A\left( {2\,;\,\, - 1\,;\,\,0} \right)\,,\)\(B\left( {0\,;\,\, - 1\,;\,\,2} \right),\)\(C\left( {2\,;\,\,3\,;\,\, - 1} \right).\) Biết điểm \(M\left( {{x_0}\,;\,\,{y_0}\,;\,\,{z_0}} \right)\) thuộc mặt phẳng \((P)\) sao cho \(M{A^2} + 3M{B^2} - 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó tổng \(T = {x_0} + 3{y_0} - 2{z_0}\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(I\) là điểm thoả mãn \(\overrightarrow {IA} + 3\overrightarrow {IB} - 2\overrightarrow {IC} = \vec 0 \Rightarrow I\left( { - 1\,;\,\, - 5\,;\,\,4} \right).\)
Khi đó \(T = M{A^2} + 3M{B^2} - 2M{C^2} = 2M{I^2} + I{A^2} + 3I{B^2} - 2I{C^2}\)
\( \Rightarrow {T_{\min }} \Leftrightarrow M{I_{\max }} \Leftrightarrow M\) là hình chiếu của \(I\) lên mặt phẳng \(\left( P \right).\)
Khi đó đường thẳng \[MI\] đi qua \(I\left( { - 1\,;\,\, - 5\,;\,\,4} \right)\) và vuông góc với \(\left( P \right)\) nên nhận vectơ pháp tuyến \(\vec n = \left( {1\,;\,\,1\,;\,\, - 3} \right)\) của \(\left( P \right)\) làm vectơ chỉ phương.
Ta có phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + t}\\{y = - 5 + t}\\{z = 4 - 3t}\end{array}\,\,\left( {t \in \mathbb{R}} \right)} \right..\)
Mặt khác \(M = IM \cap \left( P \right)\) nên toạ độ điểm \(M\) là nghiệm của hệ phương trình sau:
\(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + t}\\{y = - 5 - t}\\{z = 4 - 3t}\\{5x - y + z - 2 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{x = 0}\\{y = - 4}\\{z = 1}\end{array} \Rightarrow M\left( {0\,;\,\, - 4\,;\,\,1} \right) \Rightarrow T = - 14.} \right.} \right.\)
Đáp án: −14.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.