Câu hỏi:

21/06/2024 380

Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang \[ABCD\] có hai đáy \[AB,\,\,CD;\] có tọa độ ba đỉnh \(A\left( {1\,;\,\,2\,;\,\,1} \right),\,\,B\left( {2\,;\,\,0\,;\,\, - 1} \right),\,\,C\left( {6\,;\,\,1\,;\,\,0} \right).\) Biết hình thang có diện tích bằng \(6\sqrt 2 .\) Giả sử đỉnh \(D\left( {a\,;\,\,b\,;\,\,c} \right)\). Mệnh đề đúng là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Cách 1: \(\overrightarrow {AB}  = \left( {1\,;\,\, - 2\,;\,\, - 2} \right),\,\,\overrightarrow {AC}  = \left( {5\,;\,\, - 1\,;\,\, - 1} \right),\)

\(\overrightarrow {DC}  = \left( {6 - a\,;\,\,1 - b\,;\,\, - c} \right){\rm{. }}\)

Ta có \({S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right]} \right| = \frac{{9\sqrt 2 }}{2}\)

\( \Rightarrow {S_{ACD}} = 6\sqrt 2  - \frac{{9\sqrt 2 }}{2} = \frac{{3\sqrt 2 }}{2}\).

Vì \(AB\,{\rm{//}}\,CD\) nên \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng phương, cùng chiều. Khi đó, ta có

\(\frac{{6 - a}}{1} = \frac{{1 - b}}{{ - 2}} = \frac{c}{2} > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c = 12 - 2a}\\{b = 13 - 2a}\\{a < 6}\\{b > 1}\\{c > 0}\end{array}} \right. & \left( * \right)\)

Lại có \(\left[ {\overrightarrow {AC} \,,\,\,\overrightarrow {AD} } \right] = \left( {0\,;\,\,9a - 54\,;\,\,54 - 9a} \right)\).

Ta có \({S_{ACD}} = \frac{{3\sqrt 2 }}{2} \Leftrightarrow \frac{1}{2}\left| {\left[ {\overrightarrow {AC} \,,\,\,\overrightarrow {AD} } \right]} \right| = \frac{{3\sqrt 2 }}{2} \Leftrightarrow \left| {54 - 9a} \right| = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = \frac{{19}}{3}}\\{a = \frac{{17}}{3}}\end{array}} \right.\).

So với điều kiện \((*)\) suy ra \(a = \frac{{17}}{3} \Rightarrow b = \frac{5}{3},\,\,c = \frac{2}{3} \Rightarrow a + b + c = 8\). Chọn C.

Cách 2: Ta có \[AB = 3\,;\,\,h = d\left( {C\,,\,\,AB} \right) = \frac{{\sqrt {162} }}{3}\].

\({S_{ABCD}} = \frac{h}{2}\left( {AB + CD} \right) \Leftrightarrow 6\sqrt 2  = \frac{{\sqrt {162} }}{6}\left( {3 + CD} \right) \Leftrightarrow CD = 1.{\rm{ }}\)

Suy ra \(\overrightarrow {AB}  = 3\overrightarrow {DC}  \Leftrightarrow D\left( {\frac{{17}}{3};\,\,\frac{5}{3};\,\,\frac{2}{3}} \right) \Rightarrow a + b + c = 8\). Chọn C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Media VietJack

Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).

Xem đáp án » 13/07/2024 37,318

Câu 2:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?

Xem đáp án » 21/06/2024 12,031

Câu 3:

Lĩnh vực nào sau đây không đặt ra làm mục tiêu hợp tác chính trong Liên minh châu Âu (EU)? 

Xem đáp án » 08/08/2024 8,908

Câu 4:

Có bao nhiêu số nguyên \(m\) để phương trình \(3\cos \left( {x + \frac{\pi }{6}} \right) - m + 5 = 0\) có nghiệm?

Xem đáp án » 21/06/2024 5,447

Câu 5:

Sông nào sau đây có mùa lũ vào thu-đông? 

Xem đáp án » 08/08/2024 3,905

Câu 6:

Cho hàm số \(f\left( x \right) = 2\left| {x - 1} \right|.\) Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 2 \right) + F\left( 0 \right) = 5.\) Giá trị của biểu thức \(P = F\left( 3 \right) + F\left( { - 2} \right)\) bằng

Xem đáp án » 21/06/2024 3,684

Câu 7:

Khó khăn lớn nhất của Đông Nam Bộ trong phát triển nông nghiệp là

Xem đáp án » 08/08/2024 3,054
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua