Câu hỏi:
21/06/2024 451Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang \[ABCD\] có hai đáy \[AB,\,\,CD;\] có tọa độ ba đỉnh \(A\left( {1\,;\,\,2\,;\,\,1} \right),\,\,B\left( {2\,;\,\,0\,;\,\, - 1} \right),\,\,C\left( {6\,;\,\,1\,;\,\,0} \right).\) Biết hình thang có diện tích bằng \(6\sqrt 2 .\) Giả sử đỉnh \(D\left( {a\,;\,\,b\,;\,\,c} \right)\). Mệnh đề đúng là
Quảng cáo
Trả lời:
Cách 1: \(\overrightarrow {AB} = \left( {1\,;\,\, - 2\,;\,\, - 2} \right),\,\,\overrightarrow {AC} = \left( {5\,;\,\, - 1\,;\,\, - 1} \right),\)
\(\overrightarrow {DC} = \left( {6 - a\,;\,\,1 - b\,;\,\, - c} \right){\rm{. }}\)
Ta có \({S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right]} \right| = \frac{{9\sqrt 2 }}{2}\)
\( \Rightarrow {S_{ACD}} = 6\sqrt 2 - \frac{{9\sqrt 2 }}{2} = \frac{{3\sqrt 2 }}{2}\).Vì \(AB\,{\rm{//}}\,CD\) nên \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng phương, cùng chiều. Khi đó, ta có
\(\frac{{6 - a}}{1} = \frac{{1 - b}}{{ - 2}} = \frac{c}{2} > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c = 12 - 2a}\\{b = 13 - 2a}\\{a < 6}\\{b > 1}\\{c > 0}\end{array}} \right. & \left( * \right)\)
Lại có \(\left[ {\overrightarrow {AC} \,,\,\,\overrightarrow {AD} } \right] = \left( {0\,;\,\,9a - 54\,;\,\,54 - 9a} \right)\).
Ta có \({S_{ACD}} = \frac{{3\sqrt 2 }}{2} \Leftrightarrow \frac{1}{2}\left| {\left[ {\overrightarrow {AC} \,,\,\,\overrightarrow {AD} } \right]} \right| = \frac{{3\sqrt 2 }}{2} \Leftrightarrow \left| {54 - 9a} \right| = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = \frac{{19}}{3}}\\{a = \frac{{17}}{3}}\end{array}} \right.\).
So với điều kiện \((*)\) suy ra \(a = \frac{{17}}{3} \Rightarrow b = \frac{5}{3},\,\,c = \frac{2}{3} \Rightarrow a + b + c = 8\). Chọn C.
Cách 2: Ta có \[AB = 3\,;\,\,h = d\left( {C\,,\,\,AB} \right) = \frac{{\sqrt {162} }}{3}\].
\({S_{ABCD}} = \frac{h}{2}\left( {AB + CD} \right) \Leftrightarrow 6\sqrt 2 = \frac{{\sqrt {162} }}{6}\left( {3 + CD} \right) \Leftrightarrow CD = 1.{\rm{ }}\)
Suy ra \(\overrightarrow {AB} = 3\overrightarrow {DC} \Leftrightarrow D\left( {\frac{{17}}{3};\,\,\frac{5}{3};\,\,\frac{2}{3}} \right) \Rightarrow a + b + c = 8\). Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.