Câu hỏi:
12/07/2024 148Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn \(\left( {{3^b} - 3} \right)\left( {a{{.2}^b} - 16} \right) < 0\)?
Quảng cáo
Trả lời:
Ta có \[a \in {\mathbb{Z}^ + } \Rightarrow a \ge 1\,;\,\,b \in \mathbb{Z}.\]
\(\left( {{3^b} - 3} \right)\left( {a{{.2}^b} - 16} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b = 1}\\{b = {{\log }_2}\left( {\frac{{16}}{a}} \right)}\end{array}} \right.\).
• TH1: \({\log _2}\left( {\frac{{16}}{a}} \right) > 1 \Leftrightarrow \frac{{16}}{a} > 2 \Leftrightarrow 0 < a < 8.\)
Khi đó ta có bảng xét dấu vế trái của bất phương trình là
Để với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn thì \(b \in \left\{ {2\,;\,\,3} \right\}\) nên
\(3 < {\log _2}\left( {\frac{{16}}{a}} \right) \le 4 \Leftrightarrow 9 < \frac{{16}}{a} \le 16 \Leftrightarrow 1 \le a < \frac{{16}}{9}\) \( \Rightarrow \) có 1 giá trị thoả mãn là \(a = 1.\)
• TH2: \({\log _2}\left( {\frac{{16}}{a}} \right) < 1 \Leftrightarrow \frac{{16}}{a} < 2 \Leftrightarrow a > 8.\)
Khi đó ta có bảng xét dấu vế trái của bất phương trình là
Để với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn thì \[b \in \left\{ { - 1\,;\,\,0} \right\}\] nên
\( - 2 \le {\log _2}\left( {\frac{{16}}{a}} \right) < - 1 \Leftrightarrow \frac{1}{4} \le \frac{{16}}{a} < \frac{1}{2} \Leftrightarrow 32 < a \le 64 \Rightarrow a \in \left\{ {33\,;\,\,34\,;\,\, \ldots ;\,\,64} \right\}.\)
Suy ra có 32 giá trị \(a\) thoả mãn.
Kết hợp 2 trường hợp, suy ra có tất cả 33 số thoả mãn yêu cầu bài toán.
Đáp án: 33.
Đã bán 851
Đã bán 1,4k
Đã bán 902
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cốc rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bố dọc cốc thành 2 phần bằng nhau) là một đường parabol. Tính thể tích cm3 tối đa mà cốc có thể chứa được (làm tròn đến hàng đơn vị).
Câu 2:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 25\,;\,\,25} \right]\) sao cho đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 2mx + 3m + 10}}\) có đúng 2 đường tiệm cận đứng?
Câu 3:
Câu 4:
Câu 6:
Cho hàm số \(f\left( x \right) = 2\left| {x - 1} \right|.\) Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 2 \right) + F\left( 0 \right) = 5.\) Giá trị của biểu thức \(P = F\left( 3 \right) + F\left( { - 2} \right)\) bằng
Câu 7:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận