Câu hỏi:
12/07/2024 160
Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn \(\left( {{3^b} - 3} \right)\left( {a{{.2}^b} - 16} \right) < 0\)?
Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn \(\left( {{3^b} - 3} \right)\left( {a{{.2}^b} - 16} \right) < 0\)?
Quảng cáo
Trả lời:
Ta có \[a \in {\mathbb{Z}^ + } \Rightarrow a \ge 1\,;\,\,b \in \mathbb{Z}.\]
\(\left( {{3^b} - 3} \right)\left( {a{{.2}^b} - 16} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b = 1}\\{b = {{\log }_2}\left( {\frac{{16}}{a}} \right)}\end{array}} \right.\).
• TH1: \({\log _2}\left( {\frac{{16}}{a}} \right) > 1 \Leftrightarrow \frac{{16}}{a} > 2 \Leftrightarrow 0 < a < 8.\)
Khi đó ta có bảng xét dấu vế trái của bất phương trình là
Để với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn thì \(b \in \left\{ {2\,;\,\,3} \right\}\) nên
\(3 < {\log _2}\left( {\frac{{16}}{a}} \right) \le 4 \Leftrightarrow 9 < \frac{{16}}{a} \le 16 \Leftrightarrow 1 \le a < \frac{{16}}{9}\) \( \Rightarrow \) có 1 giá trị thoả mãn là \(a = 1.\)
• TH2: \({\log _2}\left( {\frac{{16}}{a}} \right) < 1 \Leftrightarrow \frac{{16}}{a} < 2 \Leftrightarrow a > 8.\)
Khi đó ta có bảng xét dấu vế trái của bất phương trình là
Để với mỗi \(a\) có đúng hai số nguyên \(b\) thoả mãn thì \[b \in \left\{ { - 1\,;\,\,0} \right\}\] nên
\( - 2 \le {\log _2}\left( {\frac{{16}}{a}} \right) < - 1 \Leftrightarrow \frac{1}{4} \le \frac{{16}}{a} < \frac{1}{2} \Leftrightarrow 32 < a \le 64 \Rightarrow a \in \left\{ {33\,;\,\,34\,;\,\, \ldots ;\,\,64} \right\}.\)
Suy ra có 32 giá trị \(a\) thoả mãn.
Kết hợp 2 trường hợp, suy ra có tất cả 33 số thoả mãn yêu cầu bài toán.
Đáp án: 33.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Parabol có dạng \((P):y = a{x^2}\)
\((P)\) đi qua \(A\left( { - \,4\,;\,\,10} \right)\), ta có \(10 = a{.4^2} \Leftrightarrow a = \frac{{10}}{{16}} = \frac{5}{8}\)
Suy ra parabol có phương trình \(y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y.\)
Thể tích tối đa của cốc là \(V = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)} \,{\rm{d}}y \approx 251\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Đáp án: 251.Lời giải
Để đồ thị hàm số có đúng 2 đường tiệm cận đứng thì phương trình \({x^2} - 2mx + 3m + 10 = 0\) có hai nghiệm thoả mãn \({x_1},\,\,{x_2}\) phân biệt và hai nghiệm khác 1.
Nên \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{1 - 2m + 3m + 10 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m - 10 > 0}\\{m \ne - 11}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m < - 2}\\{m > 5}\end{array}} \right.}\\{m \ne - 11}\end{array}} \right.} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\,\,m \in \left[ { - 25\,;\,\,25} \right]\) nên có 42 giá trị nguyên \(m\) thoả mãn yêu cầu bài toán. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.