Câu hỏi:
23/05/2022 293Hàm số \[y = f\left( x \right)\] có giới hạn L khi \[x \to {x_0}\;\] kí hiệu là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\] khi đó:
Câu 2:
Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right|\] là:
Câu 3:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{2x}}{{\sqrt {1 - x} }}khi\,x < 1}\\{\sqrt {3{x^2} + 1} \,khi\,x \ge 1}\end{array}} \right.\). Khi đó \[\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\] là:
Câu 4:
Cho f(x) là đa thức thỏa mãn \[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}}\]. Tính \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt[3]{{6f(x) + 5}} - 5}}{{{x^2} + x - 6}}\]
Câu 6:
Giá trị của giới hạn \[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} + x} \right)\] là:
về câu hỏi!