Câu hỏi:

12/04/2022 1,252

Cho hàm số y=f(x) liên tục trên đoạn e;e2. Biết x2f'(x)lnxxf(x)+ln2x=0,xe;e2f(e)=1e. Tính tích phân I=ee2f(x)dx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ta có: x2f'(x)lnxxf(x)+ln2x=0,xe;e2
f'(x)lnx1x.f(x)ln2x=1x2f(x)lnx'=1x2
Lấy nguyên hàm hai vế ta được:f(x)lnx=1x+C theo đề bài ta có f(e)=1eC=0
suy ra f(x)=lnxxI=ee2f(x)dx=I=ee2lnxxdx=32.
Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d1 có véctơ chỉ phương u1=2;1;1; d2 có véctơ chỉ phương u2=1;2;0.
Ta có: u=u2;u1=2;1;3.
Vì đường thẳng Δ đi qua A, vuông góc với cả d1d2 nên Δ nhận u=2;1;3 làm véctơ chỉ phương, do đó Δ có phương trình là x=1+2ty=2+tz=33t.
Chọn đáp án A

Lời giải

Đường thẳng d1 có VTCP ud1=1;0;1.
Giả sử (P) là mặt phẳng qua A và vuông góc với d1P:x2z+1=0xz1=0
Gọi B là giao điểm của (P) và d2. Tọa độ B là nghiệm của hệ phương trình:
x=3+2t'y=3+t'z=0xz1=0t'=1x=1y=2z=0B1;2;0.
Đường thẳng cần tìm là đường thẳng AB
Ta có AB=1;1;1 hay VTCP của đường thẳng cần tìm là u=1;1;1
Đường thẳng cần tìm đi qua B1;2;0 và có VTCP là u=1;1;1
Suy ra phương trình đường thẳng cần tìm: x11=y21=z1.
Cách 2: (AD: Nguyễn Văn Thịnh)
Gọi Δlà đường thẳng cần tìm. Δ cắt d2 tại B.
Ta có Bd2B3+2t';3+t';0.
Đường thẳng Δ có vectơ chỉ phương là AB=1+2t';2+t';1, d1 có vectơ chỉ phương là u1=1;0;1.
Ta có Δd1ABu1AB.u1=01+2t'+0+1=0t'=1. Suy ra AB=1;1;1
Đường thẳng cần tìm đi qua B1;2;0 và có VTCP là u=1;1;1
Suy ra phương trình đường thẳng cần tìm: x11=y21=z1.
Chọn đáp án D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP