Câu hỏi:

15/04/2022 1,352

Cho hàm số y=fx có đạo hàm f'x=x+14xm5x+33 với mọi x. Có bao nhiêu giá trị nguyên của tham số m5;5 để hàm số gx=fx có 3 điểm cực trị?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Do hàm số y=fx có đạo hàm với mọi x nên y=fx liên tục trên R, do đó hàm số gx=fx liên tục trên R. Suy ra g0=f0 là một số hữu hạn.
Xét trên khoảng 0;+gx=fx
g'x=f'x=x+14xm5x+33
g'x=0xm5=0x=m
- TH1: m=0 thì x=0. Khi đó x=0 là nghiệm bội lẻ của g'x nên g'x đổi dấu một lần qua x=0 suy ra hàm số gx có duy nhất một điểm cực trị là x=0.
- TH2: m<0 thì g'x vô nghiệm, suy ra g'x>0 với mọi x>0
Hàm số y=gx đồng biến trên khoảng 0;+
Cả hai trường hợp trên đều có: hàm số gx=fx có duy nhất một điểm cực trị là x=0.
- TH 3: m>0 thì x=m là nghiệm bội lẻ của g'x
Bảng biến thiên của hàm số gx=fx
Cho hàm số y=f(x) có đạo hàmf'(x)=(x+1)^4(x-m)^5(x+3)^3  với mọi  .  (ảnh 1)
- Lại có m[5;5] và m nguyên nên m1,2,3,4,5.
Vậy có 5 giá trị nguyên của m.
Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho hai điểm M3;2;5, N1;6;3. Mặt cầu đường kính MN có phương trình là:

Xem đáp án » 15/04/2022 4,311

Câu 2:

Có bao nhiêu số nguyên dương n để logn256 là một số nguyên dương?

Xem đáp án » 15/04/2022 1,837

Câu 3:

Cho hàm số có f'xf''x liên tục trên R. Biết f'2=4f'1=2, tính 12f''xdx

Xem đáp án » 15/04/2022 1,289

Câu 4:

Cho biết 03fxdx=3,  05ftdt=10. Tính 352fzdz.

Xem đáp án » 14/04/2022 1,234

Câu 5:

Có 6 bi gồm 2 bi đỏ, 2 bi vàng, 2 bi xanh. Xếp ngẫu nhiên các viên bi thành một hàng ngang. Tính xác suất để hai viên bi vàng không xếp cạnh nhau?

Xem đáp án » 15/04/2022 1,019

Câu 6:

Có mấy giá trị nguyên dương của m để bất phương trình 9m2x+4m2xm.5m2x có nghiệm?

Xem đáp án » 15/04/2022 697

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store