Câu hỏi:

20/04/2022 579 Lưu

Cho hàm số fx có đạo hàm trên R. Biết 4fxf'x2=x2+2x, x. Tính 01fxdx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Dựa vào giả thiết ta xét fx là hàm bậc hai.
Giả sử fx=ax2+bx+c, x
4fx=4ax2+4bx+4c.
f'x=2ax+bf'x2=2ax+b2=4a2x2+4abx+b2.
4fxf'x2=4a1ax2+4b1ax+4cb2.
Theo giả thiết 4fxf'x2=x2+2x4a1a=14b1a=24cb2=0a=12b=1c=14.
Như vậy hàm số fx=12x2+x+14 thỏa mãn điều kiện bài toán.
Ta có: 01fxdx=01x22+x+14dx=x36+x22+14x01=1112.
Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 133fxdx=313fxdx=6.
Chọn đáp án A

Lời giải

Dựa vào đồ thị ta có bảng biến thiên

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên dưới (ảnh 2)

Ta thấy hàm số có điểm cực trị là x=0;x=1.

Chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP