Câu hỏi:

07/05/2022 2,994

Cho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên \(\mathbb{R}.\) Biết rằng đồ thị hàm số \(y = f'\left( x \right)\) như hình dưới đây.

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 1)

Xét hàm số \(g\left( x \right) = f\left( x \right) - {x^2} - x\) trên \(\mathbb{R}.\) Khẳng định nào sau đây là khẳng định sai

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Ta có: \(g'\left( x \right) = f'\left( x \right) - 2x - 1.\)

\(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 2x + 1.\)

Vẽ đồ thị hàm số \(y = f'\left( x \right)\) và \(y = 2x - 1\) trên cùng hệ trục tọa độ ta được hình vẽ sau:

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 2)

Từ đồ thị ta có bảng biến thiên của hàm số \(y = g\left( x \right):\)

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 3)

Dựa vào bảng biến thiên ta thấy hàm số \(g\left( x \right)\) nghịch biến trên \(\left( {1;2} \right) \Rightarrow g\left( 1 \right) >g\left( 2 \right) \Rightarrow \) B sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D.

 Anh Thưởng dự định sử dụng hết 4 m^2 kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng  (ảnh 1)

Gọi \(x,2x,h\) lần lượt là ba kích thước của hồ. \(\left( {x \ge 0} \right)\)

Diện tích xung quanh và đáy hồ: \(S = 2{x^2} + 2.xh + 2.2xh = 2{x^2} + 6xh = 4\)

\( \Rightarrow h = \frac{{2 - {x^2}}}{{3x}}\left( {0 \le x \le \sqrt 2 } \right).\)

Thể tích hồ \(V = x.2x.h = \frac{{2x\left( {2 - {x^2}} \right)}}{3}\)

\(V' = - 2{x^2} + \frac{4}{3}\)

\(V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 6 }}{3}\\x = \frac{{ - \sqrt 6 }}{3}\left( l \right)\end{array} \right.\)

\(V\left( 0 \right) = 0\)

\(V\left( {\sqrt 2 } \right) = 0\)

\(V\left( {\frac{{\sqrt 6 }}{3}} \right) = \frac{{8\sqrt 6 }}{{27}} \approx 0.73\)

Vậy thể tích lớn nhất là câu D.

Lời giải

Đáp ánA.

Ta có:

\(\begin{array}{l}y = \frac{{x + 2}}{{x + 3m}}(x \ne - 3m)\\ = >y' = \frac{{3m - 2}}{{{{(x + 3m)}^2}}}\end{array}\)

Để hàm số đồng biến trên \(( - \infty ; - 6) = >y' \ge 0\forall x \in ( - \infty ; - 6)\)

\(\begin{array}{l} < = >\left\{ \begin{array}{l}\frac{{3m - 2}}{{{{(x + 3m)}^2}}} \ge 0\\ - 3m \ge - 6\end{array} \right.\\ < = >\left\{ \begin{array}{l}m \ge \frac{2}{3}\\m \le 2\end{array} \right. = >\frac{2}{3} \le m \le 2\end{array}\)

Với \(m \in (0;20]\) và m nguyên thì ta tìm được 2 giá trị của m thỏa mãn.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP