Câu hỏi:

07/05/2022 2,672

Cho hàm số \(y = f\left( x \right)\) có đạo hàm và liên tục trên \(\mathbb{R}.\) Biết rằng đồ thị hàm số \(y = f'\left( x \right)\) như hình dưới đây.

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 1)

Xét hàm số \(g\left( x \right) = f\left( x \right) - {x^2} - x\) trên \(\mathbb{R}.\) Khẳng định nào sau đây là khẳng định sai

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Ta có: \(g'\left( x \right) = f'\left( x \right) - 2x - 1.\)

\(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 2x + 1.\)

Vẽ đồ thị hàm số \(y = f'\left( x \right)\) và \(y = 2x - 1\) trên cùng hệ trục tọa độ ta được hình vẽ sau:

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 2)

Từ đồ thị ta có bảng biến thiên của hàm số \(y = g\left( x \right):\)

 Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình dưới đây. Xét hàm số  (ảnh 3)

Dựa vào bảng biến thiên ta thấy hàm số \(g\left( x \right)\) nghịch biến trên \(\left( {1;2} \right) \Rightarrow g\left( 1 \right) >g\left( 2 \right) \Rightarrow \) B sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Anh Thưởng dự định sử dụng hết \(4{m^2}\) kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép không đáng kể). Bể cá có dung tích bằng bao nhiêu? (làm tròn đến chữ số phần trăm).

Xem đáp án » 07/05/2022 24,609

Câu 2:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\) 

Xem đáp án » 14/06/2022 6,676

Câu 3:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau: Khẳng định nào sau đây (ảnh 1)

 Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 07/05/2022 4,319

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^3},\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là

Xem đáp án » 07/05/2022 4,176

Câu 5:

Đạo hàm của hàm số \(y = {x^4}\) là 

Xem đáp án » 07/05/2022 3,897

Câu 6:

Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\) trên đoạn \(\left[ { - 4; - 1} \right].\)

Xem đáp án » 07/05/2022 3,804

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng  

Xem đáp án » 07/05/2022 3,540

Bình luận


Bình luận