Câu hỏi:
07/05/2022 934Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân có \(AB = BC = 3a.\) Đường thẳng \(A'C\) tạo với đáy một góc \({60^0}.\) Trên cạnh \(A'C\) lấy điểm \(M\) sao cho \(A'M = 2MC.\) Biết rằng \(A'B = a\sqrt {31} .\) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABB'A'} \right)\) là

Quảng cáo
Trả lời:
Đáp án C.

Hình lăng trụ đứng \(ABC.A'B'C' \Rightarrow A\) là hình chiếu của \(A'\) trên mặt đáy \(\left( {ABC} \right)\)
\( \Rightarrow \widehat {A'CA} = \left( {\widehat {A'C,\left( {ABC} \right)}} \right) = \widehat {A'CA} = {60^0}\)
\(\Delta A'CA\) vuông tại \(A \Rightarrow A'A = AC.\tan \widehat {A'CA} = 3a.\tan {60^0} = 3a\sqrt 3 \)
\(\Delta A'AB\) vuông tại \(A \Rightarrow AB = \sqrt {A'{B^2} - A'{A^2}} = \sqrt {{{\left( {a\sqrt {31} } \right)}^2} - {{\left( {3a\sqrt 3 } \right)}^2}} = \sqrt {4{a^2}} = 2a\)
Kẻ \(CH \bot AB\) tại \(H \Rightarrow H\) là trung điểm của \(AB\) (do \(\Delta ABC\) cân tại \(C)\)
Mà \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot CH \Rightarrow CH \bot \left( {ABB'A'} \right)\)
Kẻ \(MI//CH,I \in A'H \Rightarrow MI \bot \left( {ABB'A'} \right) \Rightarrow MI\) là khoảng cách từ \(M\) tới \(mp\left( {ABB'A'} \right)\)
Ta có: \(HA = \frac{{AB}}{2} = \frac{{2a}}{2} = a \Rightarrow CH = \sqrt {A{C^2} - H{A^2}} = \sqrt {{{\left( {3a} \right)}^2} - {a^2}} = \sqrt {8{a^2}} = 2a\sqrt 2 \)
\(MI//HC \Rightarrow \frac{{MI}}{{HC}} = \frac{{A'M}}{{AC}},\) mà \(A'M = 2MC \Rightarrow \frac{{A'M}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{MI}}{{HC}} = \frac{2}{3}\)
\( \Rightarrow MI = \frac{2}{3}HC = \frac{2}{3}.2a\sqrt 2 = \frac{{4a\sqrt 2 }}{3}\)
Vậy khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABB'A'} \right)\) là \(\frac{{4a\sqrt 2 }}{3}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D.
Gọi \(x,2x,h\) lần lượt là ba kích thước của hồ. \(\left( {x \ge 0} \right)\)
Diện tích xung quanh và đáy hồ: \(S = 2{x^2} + 2.xh + 2.2xh = 2{x^2} + 6xh = 4\)
\( \Rightarrow h = \frac{{2 - {x^2}}}{{3x}}\left( {0 \le x \le \sqrt 2 } \right).\)
Thể tích hồ \(V = x.2x.h = \frac{{2x\left( {2 - {x^2}} \right)}}{3}\)
\(V' = - 2{x^2} + \frac{4}{3}\)
\(V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 6 }}{3}\\x = \frac{{ - \sqrt 6 }}{3}\left( l \right)\end{array} \right.\)
\(V\left( 0 \right) = 0\)
\(V\left( {\sqrt 2 } \right) = 0\)
\(V\left( {\frac{{\sqrt 6 }}{3}} \right) = \frac{{8\sqrt 6 }}{{27}} \approx 0.73\)
Vậy thể tích lớn nhất là câu D.
Lời giải
Đáp ánA.
Ta có:
\(\begin{array}{l}y = \frac{{x + 2}}{{x + 3m}}(x \ne - 3m)\\ = >y' = \frac{{3m - 2}}{{{{(x + 3m)}^2}}}\end{array}\)
Để hàm số đồng biến trên \(( - \infty ; - 6) = >y' \ge 0\forall x \in ( - \infty ; - 6)\)
\(\begin{array}{l} < = >\left\{ \begin{array}{l}\frac{{3m - 2}}{{{{(x + 3m)}^2}}} \ge 0\\ - 3m \ge - 6\end{array} \right.\\ < = >\left\{ \begin{array}{l}m \ge \frac{2}{3}\\m \le 2\end{array} \right. = >\frac{2}{3} \le m \le 2\end{array}\)
Với \(m \in (0;20]\) và m nguyên thì ta tìm được 2 giá trị của m thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.