Câu hỏi:

07/05/2022 934

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân có \(AB = BC = 3a.\) Đường thẳng \(A'C\) tạo với đáy một góc \({60^0}.\) Trên cạnh \(A'C\) lấy điểm \(M\) sao cho \(A'M = 2MC.\) Biết rằng \(A'B = a\sqrt {31} .\) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABB'A'} \right)\) là

Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân có AB = BC = 3a. Đường thẳng A'C tạo với đáy một góc  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân có AB = BC = 3a. Đường thẳng A'C tạo với đáy một góc  (ảnh 2)

Hình lăng trụ đứng \(ABC.A'B'C' \Rightarrow A\) là hình chiếu của \(A'\) trên mặt đáy \(\left( {ABC} \right)\)

\( \Rightarrow \widehat {A'CA} = \left( {\widehat {A'C,\left( {ABC} \right)}} \right) = \widehat {A'CA} = {60^0}\)

\(\Delta A'CA\) vuông tại \(A \Rightarrow A'A = AC.\tan \widehat {A'CA} = 3a.\tan {60^0} = 3a\sqrt 3 \)

\(\Delta A'AB\) vuông tại \(A \Rightarrow AB = \sqrt {A'{B^2} - A'{A^2}} = \sqrt {{{\left( {a\sqrt {31} } \right)}^2} - {{\left( {3a\sqrt 3 } \right)}^2}} = \sqrt {4{a^2}} = 2a\)

Kẻ \(CH \bot AB\) tại \(H \Rightarrow H\) là trung điểm của \(AB\) (do \(\Delta ABC\) cân tại \(C)\)

Mà \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot CH \Rightarrow CH \bot \left( {ABB'A'} \right)\)

Kẻ \(MI//CH,I \in A'H \Rightarrow MI \bot \left( {ABB'A'} \right) \Rightarrow MI\) là khoảng cách từ \(M\) tới \(mp\left( {ABB'A'} \right)\)

Ta có: \(HA = \frac{{AB}}{2} = \frac{{2a}}{2} = a \Rightarrow CH = \sqrt {A{C^2} - H{A^2}} = \sqrt {{{\left( {3a} \right)}^2} - {a^2}} = \sqrt {8{a^2}} = 2a\sqrt 2 \)

\(MI//HC \Rightarrow \frac{{MI}}{{HC}} = \frac{{A'M}}{{AC}},\) mà \(A'M = 2MC \Rightarrow \frac{{A'M}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{MI}}{{HC}} = \frac{2}{3}\)

\( \Rightarrow MI = \frac{2}{3}HC = \frac{2}{3}.2a\sqrt 2 = \frac{{4a\sqrt 2 }}{3}\)

Vậy khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABB'A'} \right)\) là \(\frac{{4a\sqrt 2 }}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D.

 Anh Thưởng dự định sử dụng hết 4 m^2 kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng  (ảnh 1)

Gọi \(x,2x,h\) lần lượt là ba kích thước của hồ. \(\left( {x \ge 0} \right)\)

Diện tích xung quanh và đáy hồ: \(S = 2{x^2} + 2.xh + 2.2xh = 2{x^2} + 6xh = 4\)

\( \Rightarrow h = \frac{{2 - {x^2}}}{{3x}}\left( {0 \le x \le \sqrt 2 } \right).\)

Thể tích hồ \(V = x.2x.h = \frac{{2x\left( {2 - {x^2}} \right)}}{3}\)

\(V' = - 2{x^2} + \frac{4}{3}\)

\(V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 6 }}{3}\\x = \frac{{ - \sqrt 6 }}{3}\left( l \right)\end{array} \right.\)

\(V\left( 0 \right) = 0\)

\(V\left( {\sqrt 2 } \right) = 0\)

\(V\left( {\frac{{\sqrt 6 }}{3}} \right) = \frac{{8\sqrt 6 }}{{27}} \approx 0.73\)

Vậy thể tích lớn nhất là câu D.

Lời giải

Đáp ánA.

Ta có:

\(\begin{array}{l}y = \frac{{x + 2}}{{x + 3m}}(x \ne - 3m)\\ = >y' = \frac{{3m - 2}}{{{{(x + 3m)}^2}}}\end{array}\)

Để hàm số đồng biến trên \(( - \infty ; - 6) = >y' \ge 0\forall x \in ( - \infty ; - 6)\)

\(\begin{array}{l} < = >\left\{ \begin{array}{l}\frac{{3m - 2}}{{{{(x + 3m)}^2}}} \ge 0\\ - 3m \ge - 6\end{array} \right.\\ < = >\left\{ \begin{array}{l}m \ge \frac{2}{3}\\m \le 2\end{array} \right. = >\frac{2}{3} \le m \le 2\end{array}\)

Với \(m \in (0;20]\) và m nguyên thì ta tìm được 2 giá trị của m thỏa mãn.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP