Câu hỏi:

07/05/2022 899

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left| {\sin x - \cos x} \right| + 4\sin 2x = m\) có nghiệm thực? 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Phương trình: \(\left| {\sin x - \cos x} \right| + 4\sin 2x = m\)

Đặt \(t = \left| {\sin x - \cos x} \right| = \left| {\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)} \right|\) (Điều kiện: \(0 \le t \le \sqrt 2 )\)

\( \Rightarrow {t^2} = {\left( {\sin x - \cos x} \right)^2} = 1 - 2\sin x\cos x \Rightarrow \sin 2x = 1 - {t^2}\)

\( \Rightarrow \) Phương trình: \(t + 4\left( {1 - {t^2}} \right) = m \Leftrightarrow - 4{t^2} + t + 4 = m\)

Xét hàm số \(y = f\left( t \right) = - 4{t^2} + t + 4\) trên đoạn \(\left[ {0;\sqrt 2 } \right]\)

\(y' = f'\left( t \right) = - 8t + 1 = 0 \Leftrightarrow - 8t = - 1 \Leftrightarrow t = \frac{1}{8}.\)

Bảng biến thiên:

Có bao nhiêu giá trị nguyên của tham số m để phương trình |sinx-cosx| + 4sin2x = m có nghiệm thực?  (ảnh 1)

\(f\left( 0 \right) = 4;f\left( {\frac{1}{8}} \right) = \frac{{65}}{{16}};f\left( {\sqrt 2 } \right) = \sqrt 2 - 4 \Rightarrow \mathop {Min}\limits_{\left[ {0;\sqrt 2 } \right]} f\left( t \right) = \sqrt 2 - 4;\mathop {Max}\limits_{\left[ {0;\sqrt 2 } \right]} f\left( t \right) = \frac{{65}}{{16}}\)

\( \Rightarrow \sqrt 2 - 4 \le m \le \frac{{65}}{{16}},\) mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}.\)

Vậy có 7 giá trị nguyên của \(m\) để phương trình đã cho có nghiệm thực.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Anh Thưởng dự định sử dụng hết \(4{m^2}\) kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép không đáng kể). Bể cá có dung tích bằng bao nhiêu? (làm tròn đến chữ số phần trăm).

Xem đáp án » 07/05/2022 25,261

Câu 2:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\) 

Xem đáp án » 14/06/2022 6,947

Câu 3:

Đạo hàm của hàm số \(y = {x^4}\) là 

Xem đáp án » 07/05/2022 4,618

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^3},\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là

Xem đáp án » 07/05/2022 4,390

Câu 5:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau: Khẳng định nào sau đây (ảnh 1)

 Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 07/05/2022 4,361

Câu 6:

Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\) trên đoạn \(\left[ { - 4; - 1} \right].\)

Xem đáp án » 07/05/2022 4,048

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng  

Xem đáp án » 07/05/2022 3,601