Câu hỏi:

07/05/2022 2,105

Cho hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - m - 1} \right)x + 1.\) Có bao nhiêu giá trị nguyên của tham số thực \(m\) để hàm số đạt cực trị tại \({x_1},{x_2}\) thỏa mãn \(x_1^2 + 2m{x_2} - 3{m^2} + m - 5 \le 0?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Ta có \(y' = {x^2} - 2mx + {m^2} - m - 1.\)

Hàm số đạt cực trị tại \({x_1},{x_2} \Leftrightarrow y' = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\)

\( \Leftrightarrow \Delta {'_{y'}} >0 \Leftrightarrow {m^2} - \left( {{m^2} - m - 1} \right) >0\)

\( \Leftrightarrow m + 1 >0\)

\( \Leftrightarrow m >- 1.{\rm{ }}\left( * \right)\)

Vì \({x_1},{x_2}\) là nghiệm của phương trình \(y' = 0\) nên theo định lý Vi-et ta có:

\({x_1} + {x_2} = 2m,{x_1}{x_2} = {m^2} - m - 1.\)

Mặt khác, \(x_1^2 - 2m{x_1} + {m^2} - m - 1 = 0 \Leftrightarrow x_1^2 = 2m{x_1} - {m^2} + m + 1.\)

\(x_1^2 + 2m{x_2} - 3{m^2} + m - 5 \le 0 \Leftrightarrow 2m{x_1} - {m^2} + m + 1 + 2m{x_2} - 3{m^2} + m - 5 \le 0\)

\( \Leftrightarrow 2m\left( {{x_1} + {x_2}} \right) - 4{m^2} + 2m - 4 \le 0\)

\( \Leftrightarrow 2m.2m - 4{m^2} + 2m - 4 \le 0\)

\( \Leftrightarrow m \le 2.\)

So với điều kiện \(\left( * \right),\) ta có \( - 1 < m \le 2.\) Vậy có 3 giá trị nguyên của tham số thực \(m\) thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D.

 Anh Thưởng dự định sử dụng hết 4 m^2 kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng  (ảnh 1)

Gọi \(x,2x,h\) lần lượt là ba kích thước của hồ. \(\left( {x \ge 0} \right)\)

Diện tích xung quanh và đáy hồ: \(S = 2{x^2} + 2.xh + 2.2xh = 2{x^2} + 6xh = 4\)

\( \Rightarrow h = \frac{{2 - {x^2}}}{{3x}}\left( {0 \le x \le \sqrt 2 } \right).\)

Thể tích hồ \(V = x.2x.h = \frac{{2x\left( {2 - {x^2}} \right)}}{3}\)

\(V' = - 2{x^2} + \frac{4}{3}\)

\(V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 6 }}{3}\\x = \frac{{ - \sqrt 6 }}{3}\left( l \right)\end{array} \right.\)

\(V\left( 0 \right) = 0\)

\(V\left( {\sqrt 2 } \right) = 0\)

\(V\left( {\frac{{\sqrt 6 }}{3}} \right) = \frac{{8\sqrt 6 }}{{27}} \approx 0.73\)

Vậy thể tích lớn nhất là câu D.

Lời giải

Đáp ánA.

Ta có:

\(\begin{array}{l}y = \frac{{x + 2}}{{x + 3m}}(x \ne - 3m)\\ = >y' = \frac{{3m - 2}}{{{{(x + 3m)}^2}}}\end{array}\)

Để hàm số đồng biến trên \(( - \infty ; - 6) = >y' \ge 0\forall x \in ( - \infty ; - 6)\)

\(\begin{array}{l} < = >\left\{ \begin{array}{l}\frac{{3m - 2}}{{{{(x + 3m)}^2}}} \ge 0\\ - 3m \ge - 6\end{array} \right.\\ < = >\left\{ \begin{array}{l}m \ge \frac{2}{3}\\m \le 2\end{array} \right. = >\frac{2}{3} \le m \le 2\end{array}\)

Với \(m \in (0;20]\) và m nguyên thì ta tìm được 2 giá trị của m thỏa mãn.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP