Câu hỏi:
07/05/2022 2,105Cho hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - m - 1} \right)x + 1.\) Có bao nhiêu giá trị nguyên của tham số thực \(m\) để hàm số đạt cực trị tại \({x_1},{x_2}\) thỏa mãn \(x_1^2 + 2m{x_2} - 3{m^2} + m - 5 \le 0?\)
Quảng cáo
Trả lời:
Đáp án B.
Ta có \(y' = {x^2} - 2mx + {m^2} - m - 1.\)
Hàm số đạt cực trị tại \({x_1},{x_2} \Leftrightarrow y' = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\)
\( \Leftrightarrow \Delta {'_{y'}} >0 \Leftrightarrow {m^2} - \left( {{m^2} - m - 1} \right) >0\)
\( \Leftrightarrow m + 1 >0\)
\( \Leftrightarrow m >- 1.{\rm{ }}\left( * \right)\)
Vì \({x_1},{x_2}\) là nghiệm của phương trình \(y' = 0\) nên theo định lý Vi-et ta có:
\({x_1} + {x_2} = 2m,{x_1}{x_2} = {m^2} - m - 1.\)
Mặt khác, \(x_1^2 - 2m{x_1} + {m^2} - m - 1 = 0 \Leftrightarrow x_1^2 = 2m{x_1} - {m^2} + m + 1.\)
\(x_1^2 + 2m{x_2} - 3{m^2} + m - 5 \le 0 \Leftrightarrow 2m{x_1} - {m^2} + m + 1 + 2m{x_2} - 3{m^2} + m - 5 \le 0\)
\( \Leftrightarrow 2m\left( {{x_1} + {x_2}} \right) - 4{m^2} + 2m - 4 \le 0\)
\( \Leftrightarrow 2m.2m - 4{m^2} + 2m - 4 \le 0\)
\( \Leftrightarrow m \le 2.\)
So với điều kiện \(\left( * \right),\) ta có \( - 1 < m \le 2.\) Vậy có 3 giá trị nguyên của tham số thực \(m\) thỏa yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D.
Gọi \(x,2x,h\) lần lượt là ba kích thước của hồ. \(\left( {x \ge 0} \right)\)
Diện tích xung quanh và đáy hồ: \(S = 2{x^2} + 2.xh + 2.2xh = 2{x^2} + 6xh = 4\)
\( \Rightarrow h = \frac{{2 - {x^2}}}{{3x}}\left( {0 \le x \le \sqrt 2 } \right).\)
Thể tích hồ \(V = x.2x.h = \frac{{2x\left( {2 - {x^2}} \right)}}{3}\)
\(V' = - 2{x^2} + \frac{4}{3}\)
\(V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 6 }}{3}\\x = \frac{{ - \sqrt 6 }}{3}\left( l \right)\end{array} \right.\)
\(V\left( 0 \right) = 0\)
\(V\left( {\sqrt 2 } \right) = 0\)
\(V\left( {\frac{{\sqrt 6 }}{3}} \right) = \frac{{8\sqrt 6 }}{{27}} \approx 0.73\)
Vậy thể tích lớn nhất là câu D.
Lời giải
Đáp ánA.
Ta có:
\(\begin{array}{l}y = \frac{{x + 2}}{{x + 3m}}(x \ne - 3m)\\ = >y' = \frac{{3m - 2}}{{{{(x + 3m)}^2}}}\end{array}\)
Để hàm số đồng biến trên \(( - \infty ; - 6) = >y' \ge 0\forall x \in ( - \infty ; - 6)\)
\(\begin{array}{l} < = >\left\{ \begin{array}{l}\frac{{3m - 2}}{{{{(x + 3m)}^2}}} \ge 0\\ - 3m \ge - 6\end{array} \right.\\ < = >\left\{ \begin{array}{l}m \ge \frac{2}{3}\\m \le 2\end{array} \right. = >\frac{2}{3} \le m \le 2\end{array}\)
Với \(m \in (0;20]\) và m nguyên thì ta tìm được 2 giá trị của m thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.