Câu hỏi:

07/05/2022 1,065

Cho hàm số \(y = {x^3} - 3{x^2}\) có đồ thị \(\left( C \right).\) Có bao nhiêu số nguyên \(b \in \left( { - 10;10} \right)\) để có đúng một tiếp tuyến của \(\left( C \right)\) đi qua điểm \(B\left( {0;b} \right)?\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Ta có \(y' = 3{x^2} - 6x.\)

Gọi \(d\) là tiếp tuyến với \(\left( C \right)\) và \(\left( {{x_0};{y_0}} \right)\) là tiếp điểm.

\(d:y - {y_0} = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) \Leftrightarrow d:y - \left( {x_0^3 - 3x_0^2} \right) = \left( {3x_0^2 - 6{x_0}} \right)\left( {x - {x_0}} \right).\)

\(B\left( {0;b} \right) \in d \Leftrightarrow b - x_0^3 + 3x_0^2 = - {x_0}\left( {3x_0^2 - 6{x_0}} \right) \Leftrightarrow 2x_0^3 - 3x_0^2 + b = 0 \Leftrightarrow b = - 2x_0^3 + 3x_0^2.\left( 1 \right)\)

Đặt \(f\left( x \right) = - 2{x^3} + 3{x^2}.\) Ta có \(f'\left( x \right) = - 6{x^2} + 6x.\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right..\)

Bảng biến thiên

Cho hàm số y = x^3 - 3x^2 có đồ thị (C). Có bao nhiêu số nguyên b thuộc (-10;10) để có đúng một tiếp tuyến của (C) (ảnh 1)

Yêu cầu bài toán \( \Leftrightarrow \) phương trình \(\left( 1 \right)\) có duy nhất nghiệm \({x_0} \Leftrightarrow \left[ \begin{array}{l}b >1\\b < 0\end{array} \right..\)

Vậy có 17 số nguyên \(b \in \left( { - 10;10} \right)\) thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Anh Thưởng dự định sử dụng hết \(4{m^2}\) kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép không đáng kể). Bể cá có dung tích bằng bao nhiêu? (làm tròn đến chữ số phần trăm).

Xem đáp án » 07/05/2022 24,610

Câu 2:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\) 

Xem đáp án » 14/06/2022 6,676

Câu 3:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau: Khẳng định nào sau đây (ảnh 1)

 Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 07/05/2022 4,320

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^3},\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là

Xem đáp án » 07/05/2022 4,177

Câu 5:

Đạo hàm của hàm số \(y = {x^4}\) là 

Xem đáp án » 07/05/2022 3,897

Câu 6:

Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\) trên đoạn \(\left[ { - 4; - 1} \right].\)

Xem đáp án » 07/05/2022 3,805

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng  

Xem đáp án » 07/05/2022 3,541

Bình luận


Bình luận