Câu hỏi:
07/05/2022 222Cho các số thực \(x,y\) thỏa mãn \(x - 3\sqrt {x + 1} = 3\sqrt {y + 2} - y.\) Giá trị nhỏ nhất của biểu thức \(P = x + y\) là
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Đáp án D.
Theo giả thiết: \(x - 3\sqrt {x + 1} = 3\sqrt {y + 2} - y\left( * \right).\)
Điều kiện: \(x \ge - 1,y \ge - 2.\)
Ta có: \(P = x + y \Leftrightarrow y = P - x,\) thế vào \(\left( * \right)\) ta được:
\(3\sqrt {x + 1} + 3\sqrt {P - x + 2} = P{\rm{ }}\left( 1 \right)\)
Ta đi tìm giá trị nhỏ nhất của \(P\) để phương trình \(\left( 1 \right)\) có nghiệm \(x \ge - 1.\)
\(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}P \ge 0\\2\sqrt {\left( {x + 1} \right)\left( {P - x + 2} \right)} = \frac{{{P^2}}}{9} - P - 3\end{array} \right.\)
Để có nghiệm thì \(\frac{{{P^2}}}{9} - P - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{9 + 3\sqrt {21} }}{2}\\P \le \frac{{9 - 3\sqrt {21} }}{2}\end{array} \right. \Rightarrow P \ge \frac{{9 + 3\sqrt {21} }}{2}.\)
Với giá trị nhỏ nhất \(P = \frac{{9 + 3\sqrt {21} }}{2}\) thì phương trình \(\left( 1 \right)\) có nghiệm \(x = - 1,\) suy ra:
\( \Rightarrow y = P - x = \frac{{9 + 3\sqrt {21} }}{2} + 1 = \frac{{11 + 3\sqrt {21} }}{2}.\)
Mặt khác, ta lại có:\(P = x + y \Leftrightarrow x = P - y,\) thế vào (*) ta được:
\(P = 3\sqrt {P - y + 1} + 3\sqrt {y + 2} \) \(\left( 2 \right)\)
Ta đi tìm giá trị nhỏ nhất của \(P\) để phương trình \(\left( 2 \right)\) có nghiệm \(y \ge - 2.\)
\(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}P \ge 0\\2\sqrt {\left( {y + 2} \right)\left( {P - y + 1} \right)} = \frac{{{P^2}}}{9} - P - 3\end{array} \right.\)
Để có nghiệm thì \(\frac{{{P^2}}}{9} - P - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{9 + 3\sqrt {21} }}{2}\\P \le \frac{{9 - 3\sqrt {21} }}{2}\end{array} \right. \Rightarrow P \ge \frac{{9 + 3\sqrt {21} }}{2}.\)
Với giá trị nhỏ nhất \(P = \frac{{9 + 3\sqrt {21} }}{2}\) thì phương trình \(\left( 2 \right)\) có nghiệm \(y = - 2,\) suy ra:
\( \Rightarrow x = P - y = \frac{{9 + 3\sqrt {21} }}{2} + 2 = \frac{{13 + 3\sqrt {21} }}{2}.\)
Vậy \({P_{\min }} = \frac{{9 + 3\sqrt {21} }}{2} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 1\\y = \frac{{11 + 3\sqrt {21} }}{2}\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{13 + 3\sqrt {21} }}{2}\\y = - 2\end{array} \right.\end{array} \right.\)
Đã bán 1,3k
Đã bán 386
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Anh Thưởng dự định sử dụng hết \(4{m^2}\) kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép không đáng kể). Bể cá có dung tích bằng bao nhiêu? (làm tròn đến chữ số phần trăm).
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\)
Câu 4:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^3},\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là
Câu 5:
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?
Câu 6:
Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\) trên đoạn \(\left[ { - 4; - 1} \right].\)
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận