Câu hỏi:
07/05/2022 3,524Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D.
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right) = 0\left( * \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\{\pi ^{2x}} - {\pi ^x} + 2021 = 0\\{x^2} - 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 2\\x = 0\end{array} \right.\) (trong đó \(x = 3\) là nghiệm bội chẵn).
Suy ra: \(y' = \left( {2x - 8} \right).f'\left( {{x^2} - 8x + m} \right),y' = 0 \Leftrightarrow \left( {2x - 8} \right).f'\left( {{x^2} - 8x + m} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}2x - 8 = 0\\f'\left( {{x^2} - 8x + m} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\{x^2} - 8x + m = 3{\rm{ }}\left( 1 \right)\\{x^2} - 8x + m = 2{\rm{ }}\left( 2 \right)\\{x^2} - 8x + m = 0{\rm{ }}\left( 3 \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\{x^2} - 8x = 3 - m{\rm{ }}\left( 1 \right)\\{x^2} - 8x = 2 - m{\rm{ }}\left( 2 \right)\\{x^2} - 8x = - m{\rm{ }}\left( 3 \right)\end{array} \right.\)
Xét hàm số \(y = h\left( x \right) = {x^2} - 8x,h'\left( x \right) = 2x - 8,h'\left( x \right) = 0 \Leftrightarrow 2x - 8 = 0 \Leftrightarrow x = 4.\)
Ta có bảng biến thiên của hàm số \(y = h\left( x \right).\)
Vì \(x = 3\) là nghiệm bội chẵn của phương trình \(f'\left( x \right) = 0\) nên nghiệm của phương trình \(\left( 1 \right)\) không phải là điểm cực trị của hàm số.
Từ bảng biến thiên suy ra, hàm số có đúng ba điểm cực trị khi phương trình \(\left( 2 \right)\) có hai nghiệm phân biệt đồng thời phương trình \(\left( 3 \right)\) vô nghiệm hoặc có nghiệm duy nhất \(x = 4.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2 - m >- 16\\ - m \le - 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 18\\m \ge 16\end{array} \right. \Rightarrow m \in \left\{ {16;17} \right\}\).
Nếu \(x = 4\) là nghiệm của phương trình \(\left( 3 \right)\) thì \(m = 16,\) suy ra phương trình \(\left( 2 \right) \Leftrightarrow {x^2} - 8x + 14 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4 - \sqrt 2 \\x = 4 + \sqrt 2 \end{array} \right.\) (không thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50).\)
Nếu \(m = 17\) thì phương trình \(\left( 3 \right)\) vô nghiệm, phương trình \(\left( 2 \right) \Leftrightarrow {x^2} - 8x + 15 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 5\end{array} \right.\) (thỏa mãn: \({3^2} + {4^2} + {5^2} = 50).\)
Vậy \(S = \left\{ {17} \right\}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Anh Thưởng dự định sử dụng hết \(4{m^2}\) kính để làm bể cá có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép không đáng kể). Bể cá có dung tích bằng bao nhiêu? (làm tròn đến chữ số phần trăm).
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\)
Câu 3:
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?
Câu 4:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^3},\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là
Câu 6:
Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\) trên đoạn \(\left[ { - 4; - 1} \right].\)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!