Câu hỏi:

12/07/2024 4,817

Cho tứ giác ABCD. Lập mệnh đề P Q và xét tính đúng sai của mệnh đề đó với:

a) P: “Tứ giác ABCD là hình chữ nhật”, Q: “Tứ giác ABCD là hình bình hành”;

b) P: “Tứ giác ABCD là hình thoi”, Q: “Tứ giác ABCD là hình vuông”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Mệnh đề P ⇒ Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”.

Mệnh đề kéo theo này là mệnh đề đúng vì ABCD là hình chữ nhật thì AB // = CD nên ABCD là hình bình hành.

b) Mệnh đề P ⇒ Q: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”.

Mệnh đề phủ định là là mệnh đề sai, thật vậy, ta có thể lấy một hình thoi không có góc nào là góc vuông thì hình thoi ấy không phải là hình vuông.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Tập hợp A B là tập hợp các phần tử vừa thuộc A vừa thuộc B

Vậy A B = [0; 3] (2; + ) = (2; 3].

+ Tập hợp A B là tập hợp các phần tử thuộc A hoặc thuộc B

Vậy A B = [0; 3] (2; + ) = [0; + ).

+ Tập hợp A \ B là tập hợp các phần tử thuộc A nhưng không thuộc B

Vậy A \ B = [0; 3] \ (2; + ) = [0; 2].

+ Tập hợp B \ A là tập hợp các phần tử thuộc B nhưng không thuộc A

Vậy B \ A =  (2; + ) \ [0; 3] = (3; + ).

+ Tập hợp \ B là tập hợp các số thực không thuộc tập hợp B

Vậy \ B =  \ (2; + ) = (– ; 2].

Lời giải

a) Ta thấy 8 đội ở vòng đấu tứ kết được chọn từ 16 đội ở vòng đấu loại trực tiếp và 16 đội ở vòng loại trực tiếp được chọn từ 32 đội tham gia World Cup năm 2018.

Do đó các phần tử thuộc tập hợp C đều thuộc tập hợp B và các phần tử của tập hợp B đều thuộc tập hợp A.

Nên C là tập con của B và B là tập con của A.

Vậy C ⊂ B ⊂ A.

b) Có C ⊂ A nên A ∩ C = C

Lại có C ⊂ B nên B ∩ C = C

Vậy A ∩ C = B ∩ C.

c) Tập hợp A \ B là tập hợp các đội bóng thuộc A nhưng không thuộc B.

Mà A là tập hợp 32 đội tham gia World Cup năm 2018, B là tập hợp 16 đội sau vòng thi đấu bảng.

Điều này có nghĩa là tập hợp A \ B gồm những đội bóng bị loại sau vòng thi đấu bảng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay