“Mỗi tháng, y vẫn cho nó dăm hào. Khi sai nó trả tiền giặt hay mua thức gì, còn năm ba xu, một vài hào, y thường cho nốt nó luôn. Nhưng cho rồi, y vẫn thường tiếc ngấm ngầm. Bởi vì những số tiền cho lặt vặt ấy, góp lại, trong một tháng, có thể thành đến hàng đồng” (Sống mòn – Nam Cao)
Nhận xét về phép liên kết của các câu văn trên.
“Mỗi tháng, y vẫn cho nó dăm hào. Khi sai nó trả tiền giặt hay mua thức gì, còn năm ba xu, một vài hào, y thường cho nốt nó luôn. Nhưng cho rồi, y vẫn thường tiếc ngấm ngầm. Bởi vì những số tiền cho lặt vặt ấy, góp lại, trong một tháng, có thể thành đến hàng đồng” (Sống mòn – Nam Cao)
Nhận xét về phép liên kết của các câu văn trên.
Quảng cáo
Trả lời:
Chọn C
Phương pháp giải:
Phân tích, tổng hợp
Giải chi tiết:
- Các đoạn văn trong một văn bản cũng như các câu trong một đoạn văn phải liên kết chặt chẽ với nhau về nội dung và hình thức.
- Về hình thức, các câu và các đoạn văn có thể được liên kết với nhau bằng một số biện pháp chính như sau:
+ Lặp lại ở câu đứng sau từ ngữ đã có ở câu trước (phép lặp từ ngữ)
+ Sử dụng ở câu đứng sau các từ ngữ đồng nghĩa, trái nghĩa hoặc cùng trường liên tưởng với từ ngữ đã có ở câu trước (phép đồng nghĩa, trái nghĩa và liên tưởng)
+ Sử dụng ở câu đứng sau các từ ngữ có tác dụng thay thế từ ngữ đã có ở câu trước (phép thế)
+ Sử dụng ở câu đứng sau các từ ngữ biểu thị quan hệ với câu trước (phép nối)
- Các phép liên kết:
+ Phép lặp: “y”, “nó”
+ Phép nối: “nhưng”, “bởi vì”
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Phương pháp giải:
Mặt cầu tâm có bán kính R thì có phương trình là
Giải chi tiết:
Vì mặt cầu tiếp xúc với trục nên mặt cầu có bán kính
Ta có:
nên
Phương trình mặt cầu là:
Lời giải
Phương pháp giải:
Gọi số sách khối 8 và khối 9 quyên góp được lần lượt là x; y (quyển sách), .
Dựa vào giả thiết của bài toán để lập hệ phương trình và giải hệ phương trình.
+) Phương trình thứ nhất: Số sách lớp 8 + số sách lớp 9 quyên góp được = 540.
+) Phương trình thứ hai: Số sách mỗi học sinh khối 9 – số sách mỗi học sinh khối 8 = 1.
Giải hệ phương trình vừa lập để tìm x; y và kết luận.
Giải chi tiết:
Gọi số sách khối 8 và khối 9 quyên góp được lần lượt là x; y (quyển sách),
Số sách cả hai khối quyên góp được là:
Số sách một bạn học sinh khối 8 quyên góp là: (quyển)
Số sách một bạn học sinh khối 9 quyên góp là: (quyển)
Mỗi học sinh khối 9 quyên góp nhiều hơn nhiều hơn mỗi học sinh khối 8 một quyển nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy khối 9 đã quyên góp được 300 quyển sách, khối 8 đã quyên góp được 240 quyển sách.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.