Câu hỏi:

12/05/2022 370 Lưu

Đường thẳng nối hai điểm cực trị của đồ thị hàm số y=mx2+42mx62x+9  cách gốc tọa độ một khoảng lớn nhất khi m bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Để đồ thị có hai điểm cực trị thì phương trình y'=0 có hai nghiệm phân biệt. Ta tìm được điều kiện m>0 hoặc m>1433 . Khi đó đường thẳng nối hai điểm cực trị có phương trình là:

y=mx2+42mx6'2x+9'=mx+2m.

Khoảng cách từ gốc tọa độ đến đường thẳng nối hai điểm cực trị là:h=2mm2+1=2m2m2+1m2+1h2=m24m+4h21m2+4m+h24=0   *

Khi  thì . Khi thì (*) là phương trình bậc hai của m. Điều kiện cần và đủ để phương trình này có nghiệm làΔ'=4h21h240h2h250h5 

Khi  h=1thì m=34  (thỏa mãn).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Xét các phương trình hoành độ giao điểm:

4x2=0x=2x=21;+x=2;74x2=0x=±720;1

Suy raS=0174x2dx+124x2dx+234x2dx=0174x2dx+124x2dx+23x24dx   =7x43x310+4xx3321+x334x32=743+1631133+163=10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP