Câu hỏi:

14/05/2022 598

Trong Bài 10, ta đã dùng cách đo đạc để kiểm nghiệm tính chất sau là đúng:

“Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau” (H.3.45).

Tuy nhiên, đo đạc chỉ cho ta kết quả gần đúng và chỉ trong một trường hợp cụ thể.

Vậy có cách nào để chắc chắn rằng tính chất đó đúng cho mọi trường hợp không?

Vậy có cách nào để chắc chắn rằng tính chất đó đúng cho mọi trường hợp không (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

a // b, c cắt a tại A, c cắt b tại B;

A1^,B1^ là hai góc đồng vị.

KL

A1^=B1^.

Vậy có cách nào để chắc chắn rằng tính chất đó đúng cho mọi trường hợp không (ảnh 2)

Chứng minh:

Qua điểm B kẻ đường thẳng b' sao cho B2^=A1^. 

Khi đó đường thẳng c tạo với hai đường thẳng a và b' hai góc đồng vị bằng nhau A1^=B2^.

Theo dấu hiệu nhận biết hai đường thẳng song song ta có a và b' song song với nhau. Suy ra qua B có hai đường thẳng b, b' cùng song song với a. Theo tiên đề Euclid, b' trùng b. Từ đó suy ra B1^=A1^ (vì cùng bằng B2^).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hãy chứng minh định lí nói ở Ví dụ trang 56: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng (ảnh 1)

Trong hình vẽ trên, ta có hai đường thẳng a và b song song với nhau.

Đường thẳng c vuông góc với đường thẳng a.

Giao điểm của hai đường thẳng a và b với đường thẳng c lần lượt là A và B.

Do đường thẳng a vuông góc với đường thẳng c nên aAc^=90°.

Do đường thẳng a song song với đường thẳng b nên aAc^=bBc^ (hai góc đồng vị)

Do đó bBc^=90°.

Vậy đường thẳng b vuông góc với đường thẳng c.

Trong chứng minh này, chúng ta sử dụng các kiến thức về số đo của góc vuông, các góc tạo bởi hai đường thẳng cắt nhau, tính chất hai đường thẳng song song.

Lời giải

Khẳng định (1) đúng dựa vào tính chất tia phân giác của góc.

Khẳng định (2) sai, ta có ví dụ như sau:

Cho góc xOy không phải góc bẹt. Khẳng định nào sau đây là đúng?  (1) Nếu Ot là tia phân giác của góc xOy thì (ảnh 1)

Trong hình vẽ trên, Oz là tia phân giác của góc xOy, Ot là tia đối của Oz.

Do Oz là tia phân giác của góc xOy nên xOz^=zOy^ (tính chất tia phân giác của góc).

xOt^+xOz^=180°,yOt^+zOy^=180°(hai góc kề bù) nên xOt^=tOy^. 

Ta thấy xOt^=tOy^ mà Ot không phải tia phân giác của góc xOy nên khẳng định (2) sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay