Câu hỏi:

11/07/2024 8,944

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

MB2+ MC2=MA2+MB2+MC2=(MG+GA)2+(MG+GB)2+(MG+GC)2=MG2+2MG.GA+GA2+MG2+2MG.GB+GB2+MG2+2MG.GC+GC2=3MG2+2MG.(GA+GB+GC)+GA2+GB2+GC2Ta : GA+GB+GC=0select: (tính chất trọng tâm tam giác)MG.(GA+GB+GC)=MG.0=0MA2+ MB2+ MC2=3MG2+GA2+GB2+GC2.

Vậy MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-4;1), B(2;4), C(2;-2).

a) Giải tam giác ABC.

b) Tìm tọa độ trực tâm H của tam giác ABC.

Xem đáp án » 11/07/2024 27,876

Câu 2:

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto a b trong mỗi trường hợp sau:

a) a(3;1),b(2;6);

b) a(3;1),b(2;4);

c) a(2;1),b(2;2);

Xem đáp án » 11/07/2024 16,612

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;2), B(-4;3). Gọi M(t;0) là một điểm thuộc trục hoành.

a) Tính AM.BM theo t.

b) Tính t để ^AMB=900.

Xem đáp án » 11/07/2024 13,487

Câu 4:

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Gọi H là trực tâm của tam giác ABC.

a) Chứng minh rằng AH.BC=0 và BH.CA=0.

b) Tìm tọa độ của H.

c) Giải tam giác ABC.

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Gọi H là trực tâm tam giác ABC. (ảnh 1)

Xem đáp án » 21/05/2022 8,686

Câu 5:

Cho tam giác đều ABC. Tính (AB,BC).

Xem đáp án » 21/05/2022 8,495

Câu 6:

Chứng minh rằng với mọi tam giác ABC, 

SABC=12AB2.AC2(AB.AC)2.

Xem đáp án » 11/07/2024 7,701
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua