Câu hỏi:

13/07/2024 3,374

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình: (ảnh 1)

Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bài học này sẽ giới thiệu một vài số đặc trưng như :khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn và phương sai.

Ở đây ta sẽ sử dụng độ lệch chuẩn để so sánh

Điểm trung bình môn học kì I của An là: X1¯=8,0

s12=9,28,02+8,78,02+...+7,38,02+6,58,028=1,045

s1=s12=1,0451,02.

Điểm trung bình môn học kì I của Bình là X2¯=8,0

s22=8,28,02+8,18,02+...+7,68,02+8,18,028=0,045

s2=s22=0,360,21.

Vì s2 < s1 nên độ phân tán của số liệu 2 nhỏ hơn độ phân tán của số liệu 1 hay bạn Bình học đều hơn bạn An.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chiều cao cao nhất và thấp nhất tương ứng là 172 cm và 159 cm. Do đó khoảng biến thiên là R = 172 – 159 = 13 cm.

Vậy khoảng biến thiên R = 13cm.

Lời giải

Sắp xếp các giá trị của số liệu trên theo thứ tự từ bé đến lớn là:

2,593; 2,977; 3,155; 3,270; 3,387; 3,412; 3,813; 3,920; 4,042; 4,236.            .

Ta có giá trị lớn nhất là 4,236 kg và giá trị nhỏ nhất là 2,593 kg.

Khi đó khoảng biến thiên là: R = 4,236 – 2,593 = 1,643.

Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa: Q2 = (3,387 + 3,412):2 = 3,3995.

Nửa số liệu bên trái gồm 5 số liệu là một số lẻ nên tứ phân vị thứ nhất là: Q1 = 3,155.

Nửa số liệu bên phải gồm 5 số liệu là một số lẻ nên tứ phân vị thứ ba là: Q3 = 3,920.

Khoảng tứ phân vị là: ΔQ=Q3Q1=3,9203,155=0,765.

Số trung bình cộng của mẫu số liệu là:

X¯=2,593+2,977+3,155+3,270+3,387+3,412+3,813+3,920+4,042+4,23610= 3,4805.

s2=2,5933,48052+2,9773,48052+...+4,0423,48052+4,2363,4805210

0,24

s=s20,49.

Vậy khoảng biến thiên R = 1,643, khoảng tứ phân vị ΔQ=0,765; độ lệch chuẩn s0,49.