Câu hỏi:

24/05/2022 315 Lưu

Cho hàm số y = f(x) liên tục trên  có đồ thị như hình dưới đây.

Cho hàm số y = f(x) liên tục trên  có đồ thị như hình dưới đây. Phương trình (ảnh 1)

Phương trình 2ffx=1 có bao nhiêu nghiệm. 

A. 0                             
B. 9                             
C. 5                             
D. 7

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D.

Ta có 2ffx=1ffx=12fx=a2;1fx=b0;1fx=c1;2.

Cho hàm số y = f(x) liên tục trên  có đồ thị như hình dưới đây. Phương trình (ảnh 2)

Dựa vào đồ thị, ta thấy

Phương trình fx=a2;1 có duy nhất 1 nghiệm.

Phương trình fx=b0;1 có 3 nghiệm phân biệt.

Phương trình fx=c1;2 có 3 nghiệm phân biệt.

Các nghiệm của phương trình fx=a,fx=b,fx=c phân biệt với nhau.

Tóm lại, phương trình đã cho có tất cả 7 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. (-;+)

B. 1;+.

C. 0;+.

D. 1;+.

Lời giải

Chọn D.

ĐKXĐ: x1>0x>1

Tập xác định của hàm số là D=1;+.

Lời giải

Chọn C.

Đồ thị hàm số có tiệm cận ngang y=y0>0ac>0a,c cùng dấu (1).

Đồ thị hàm số có tiệm cận đứng x=x0<0dc<0dc>0d,c cùng dấu (2).

Từ (1), (2) a,d cùng dấu ad>0.

Mặt khác đồ thị hàm số cắt trục tung tại điểm có tung độ âm bd<0b,d trái dấu (3).

Từ 2,3b,c trái dấu bc<0.

Vậy chọn đáp án đúng là C.

Câu 3

A. Fx=cosx+x22.

B. Fx=cosx+x22+20.

C. Fx=cosx+x22+2.

D. Fx=cosx+x22+20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 36π.

B. 72π.

C. 112π.

D. 48π.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP