Câu hỏi:

18/02/2021 357

Cho x, y là các số thực dương thỏa mãn điều kiện 5x+2y+33xy+x+1=5xy5+3-x-2y+y(x-2).Tính giá trị nhỏ nhất của biểu thức T=x+y

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Từ giả thiết, suy ra

                    

Xét hàm số f(t)=5t-13t+t trên .

Đạo hàm f'(t)=5t.ln5+ln33t+1>0, thàm số f(t) luôn đồng biến trên .

Suy ra

Do y>0 nên x+1x-2>0[x>2x<-1 . Mà x>0 nên x>2.

Từ đó T=x+y=x+x+1x-2. Xét hàm số g(x)=x+x+1x-2 trên 2;+.

Đạo hàm

Lập bảng biến thiên của hàm số trên 2;+, ta thấy min g(x)=g(2+3)=3+23.

Vậy Tmin=3+23 khi x=2+3 và x=1+3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cách 1:  Tư duy tự luận

Cách 2:  Sử dụng máy tính cầm tay

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP