Câu hỏi:

28/05/2022 1,377

Cho hàm số fx=x3+3x22m+1 (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao cho max1;3fx+min1;3fx10. Số các giá trị nguyên của S trong đoạn [-30; 30) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Ta có f'=3x2+6x>0 x1;3 nên hàm số f(x) đồng biến trên đoạn [1; 3] tức là f(1) < f(3).

Lại có f1=52m,f3=552m. Ta xét các trường hợp:

+) Trường hợp 1: f30m552.

Khi đó min1;3fx=f3=2m55 nên từ yêu cầu bài toán suy ra 2m5+552m10m352.

Kết hợp m552 có m552 (1)

+) Trường hợp 2: f1<0<f352m<0<552m52<m<552.

Khi đó min1;3fx=0.

Nếu f1<f32m5<552mm<15 thì max1;3fx=f3=552m nên từ yêu cầu bài toán suy ra 552m10m452. Kết hợp m < 15 suy ra m < 15 (*)

Nếu f1f32m5552mm15 thì max1;3fx=f1=2m5 nên từ yêu cầu bài toán suy ra 2m510m152. Kết hợp m15 suy ra m15 (**)

Kết hợp (*) và (**) với 52<m<552 có 52<m<552 2

+) Trường hợp 3: f1052m0m52.

Khi đó max1;3fx=f3=552m min1;3fx=f1=52m nên từ yêu cầu bài toán suy ra 552m+52m10m252.

Kết hợp m52 có m52 (3)

Từ (1), (2), (3) suy ra tập S=.

Vậy số các giá trị nguyên của S trong đoạn [-30; 30] là 61.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Xét phương trình hoành độ của hai đồ thị 2x1x+1=3x+11 x1

                                         2x1=3x+11x+1

                                         x=2y=5

Giao điểm của đồ thị hàm số y=2x1x+1 và đường thẳng y = 3x + 11 có tung độ bằng 5.

Câu 2

Lời giải

Chọn C.

Ta có logx<20<x<102x0;1100.

Tập nghiệm của bất phương trình logx<2 là S=0;1100.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP