Câu hỏi:
10/06/2022 1,895Cho biểu thức \(H = \frac{{2{x^2} + 2x}}{{{x^2} - 1}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}}\) với \(x \ge 0;x \ne 1\)
a) Rút gọn biểu thức H.
b) Tìm tất cả các giá trị của x để \(\sqrt x - H < 0\).
Câu hỏi trong đề: Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
a) \(H = \frac{{2{x^2} + 2x}}{{{x^2} - 1}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}} = \frac{{2x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}}\)
\( = \frac{{2x}}{{x - 1}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}} = \frac{{2x}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}}\)
b) Theo đề bài ta có \(\sqrt x - H < 0 \Leftrightarrow \sqrt x - 2 < \Leftrightarrow \sqrt x < 2 \Leftrightarrow x < 4\)
Kết hợp điều kiện \(x \ge 0;x \ne 1\) ta có \(0 \le x < 4;x \ne 1\)
Vậy với \(0 \le x < 4;x \ne 1\) thì \(\sqrt x - H < 0\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do MB, MC là hai tiếp tuyến của đường tròn (O) nên \(\widehat {OBM} = \widehat {OCM} = {90^0}\)
Xét tứ giác MBOC có: \(\widehat {OBM} + \widehat {OCM} = {180^0}\) suy ra tứ giác MBOC là tứ giác nội tiếp.
b) Xét tam giác FBD và tam giác FEC có:
\(\widehat {BFD} = \widehat {EFC}\left( {dd} \right)\)
\(\widehat {FDB} = \widehat {FCE}\) ( hai góc nội tiếp cùng chắn cung BE)
\( \Rightarrow \Delta FBD \sim \Delta FEC\left( {g - g} \right) \Rightarrow \frac{{FB}}{{FE}} = \frac{{FD}}{{FC}} \Rightarrow FD.FE = FB.FC\left( 1 \right)\)
Ta có AB// ME suy ra \(\widehat {BAC} = \widehat {DIC}\)
Mà \(\widehat {BAC} = \widehat {MBC}\)(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC)
\( \Rightarrow \widehat {DIC} = \widehat {MBC} \Rightarrow \widehat {MBF} = \widehat {CIF}\)
Xét tam giác FBM và tam giác FIC có:
\(\widehat {BFM} = \widehat {IFC}\) (đđ)
\(\widehat {MBF} = \widehat {CIF}\left( {cmt} \right)\)
\( \Rightarrow \Delta FBM \sim \Delta FIC\left( {g - g} \right) \Rightarrow \frac{{FB}}{{FI}} = \frac{{FM}}{{FC}} \Rightarrow FI.FM = FB.FC\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow FI.FM = FD.FE\left( 3 \right)\)
c) Xét tam giác FDK và tam giác FQE có:
\(\widehat {KFD} = \widehat {EFQ}\) (đđ)
\(\widehat {FKD} = \widehat {FEQ}\)( hai góc nội tiếp cùng chắn cung DQ)
\( \Rightarrow \Delta FKD \sim \Delta FEQ\left( {g - g} \right)\)
\( \Rightarrow \frac{{FK}}{{FE}} = \frac{{FD}}{{FQ}} \Rightarrow FD.FE = FK.FQ\left( 4 \right)\)
Từ (3) và (4) \( \Rightarrow FI.FM = FK.FQ \Leftrightarrow \frac{{FM}}{{FQ}} = \frac{{FK}}{{FI}}\)
Xét tam giác FMQ và tam giác FKI có:
\(\frac{{FM}}{{FQ}} = \frac{{FK}}{{FI}}\left( {cmt} \right)\)
\(\widehat {MFQ} = \widehat {KFI}\)
\( \Rightarrow \Delta FMQ \sim \Delta FKI\left( {c - g - c} \right) \Rightarrow \widehat {FMQ} = \widehat {FKI}\)
Suy ra tứ giác KIQM là tứ giác nội tiếp
\( \Rightarrow \widehat {MQK} = \widehat {MIQ}\)(hai góc nội tiếp cùng chắn cung MQ)
Ta có \(\widehat {MBF} = \widehat {CIF} \Rightarrow \widehat {MBC} = \widehat {MIF}\) suy ra tứ giác MBIC là tứ giác nội tiếp
Mà MOBC là tứ giác nội tiếp nên M, B, O, I, C cùng thuộc 1 đường tròn.
Ta có \(\widehat {OBM} = {90^0}\) suy ra OM là đường kính của đường tròn đi qua 5 điểm M, B, O, I, C.
Suy ra \(\widehat {OIM} = {90^0}\)(góc nội tiếp chắn nửa đường tròn)
\( \Rightarrow IM \bot OI \Rightarrow \widehat {MIQ} = {90^0}\)
\( \Rightarrow \widehat {MKQ} = \widehat {MIQ} = {90^0}\)
Lại có \(\widehat {QKP} = {90^0}\)(góc nội tiếp chắn nửa đường tròn)
Từ đó ta có: \(\widehat {MKP} = \widehat {MKQ} + \widehat {QKP} = {180^0}\)
Vậy 3 điểm P, K, M thẳng hàng.
Lời giải
1) a) Điểm A có hoành độ \(x = - 1\) và thuộc P nên thay \(x = - 1\) vào P ta được : \(y = 3.{\left( { - 1} \right)^2} = 3\)
\( \Rightarrow A\left( { - 1;3} \right)\)
b)Gọi \(B\left( {{x_B};0} \right)\) là điểm thuộc trục hoành và là giao điểm của hai đường thẳng d, d’. ta có \(B\left( {{x_B};0} \right)\) thuộc d \( \Rightarrow {x_B} = - 1 \Rightarrow B\left( {1;0} \right)\)
Lại có: \(B\left( {1;0} \right) \in d' \Rightarrow 0 = \frac{1}{2}.1 + b \Leftrightarrow b = - \frac{1}{2}\)
2) a) \(\left\{ \begin{array}{l}x + y = 5\\2x - y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 5 - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)
Vậy hệ pt có nghiệm duy nhất: \(\left( {x;y} \right) = \left( {2;3} \right)\)
b) Hệ phương trình có \(\frac{1}{7} \ne \frac{{ - 1}}{{ - 2}} \Rightarrow \) hệ pt \(\left\{ {\begin{array}{*{20}{c}}{x - y = a\left( 1 \right)}\\{7x - 2y = 5a - 1\left( 2 \right)}\end{array}} \right.\) có nghiệm duy nhất với mọi a.
Theo đề bài ta có hệ pt có nghiệm duy nhất thỏa mãn \(y = 2x\)
Thay \(y = 2x\) vào (1) ta được: \(x - 2x = a \Leftrightarrow x = - a \Rightarrow y = - 2a\)
Thay \(x = - a;y = - 2a\) vào (2) ta được:
\(7\left( { - a} \right) - 2\left( { - 2a} \right) = 5a - 1\) \( \Leftrightarrow - 7a + 4a - 5a = - 1\) \( \Leftrightarrow - 8a = - 1\) \( \Leftrightarrow a = \frac{1}{8}\)
Vậy \(a = \frac{1}{8}\) thỏa mãn bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận