Câu hỏi:
10/06/2022 1,5691) Cho đường thẳng (d): \(y = x - 1\) và parabol (P): \(y = 3{x^2}\).
a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ \(x = - 1\).
b) Tìm b để đường thẳng (d) và đường thẳng (d’): \(y = \frac{1}{2}x + b\) cắt nhau tại một điểm trên trục hoành.
2) a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + y = 5\\2x - y = 1\end{array} \right.\).
b) Tìm tham số a để hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = a}\\{7x - 2y = 5a - 1}\end{array}} \right.\). Có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn \(y = 2x\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
1) a) Điểm A có hoành độ \(x = - 1\) và thuộc P nên thay \(x = - 1\) vào P ta được : \(y = 3.{\left( { - 1} \right)^2} = 3\)
\( \Rightarrow A\left( { - 1;3} \right)\)
b)Gọi \(B\left( {{x_B};0} \right)\) là điểm thuộc trục hoành và là giao điểm của hai đường thẳng d, d’. ta có \(B\left( {{x_B};0} \right)\) thuộc d \( \Rightarrow {x_B} = - 1 \Rightarrow B\left( {1;0} \right)\)
Lại có: \(B\left( {1;0} \right) \in d' \Rightarrow 0 = \frac{1}{2}.1 + b \Leftrightarrow b = - \frac{1}{2}\)
2) a) \(\left\{ \begin{array}{l}x + y = 5\\2x - y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 5 - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)
Vậy hệ pt có nghiệm duy nhất: \(\left( {x;y} \right) = \left( {2;3} \right)\)
b) Hệ phương trình có \(\frac{1}{7} \ne \frac{{ - 1}}{{ - 2}} \Rightarrow \) hệ pt \(\left\{ {\begin{array}{*{20}{c}}{x - y = a\left( 1 \right)}\\{7x - 2y = 5a - 1\left( 2 \right)}\end{array}} \right.\) có nghiệm duy nhất với mọi a.
Theo đề bài ta có hệ pt có nghiệm duy nhất thỏa mãn \(y = 2x\)
Thay \(y = 2x\) vào (1) ta được: \(x - 2x = a \Leftrightarrow x = - a \Rightarrow y = - 2a\)
Thay \(x = - a;y = - 2a\) vào (2) ta được:
\(7\left( { - a} \right) - 2\left( { - 2a} \right) = 5a - 1\) \( \Leftrightarrow - 7a + 4a - 5a = - 1\) \( \Leftrightarrow - 8a = - 1\) \( \Leftrightarrow a = \frac{1}{8}\)
Vậy \(a = \frac{1}{8}\) thỏa mãn bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O), điểm M nằm ngoài đường tròn (O). kẻ hai tiếp tuyến MB, MC (B và C là các tiếp điểm) với đường tròn. Trên cung lớn BC lấy điểm A sao cho AB < AC. Từ điểm M kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn (O) tại D và E (MD < ME),cắt BC tại F, cắt AC tại I.
a) Chứng minh tứ giác MBOC nội tiếp.
b) Chứng minh \(FD.FE = FB.FC;FI > FE = FD.FE\)
c) Đường thẳng OI cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt đường tròn (O) tại K (K khác Q). Chứng minh 3 điểm P, K, M thẳng hàng.
Câu 2:
Cho biểu thức \(H = \frac{{2{x^2} + 2x}}{{{x^2} - 1}} + \frac{1}{{\sqrt x + 1}} - \frac{1}{{\sqrt x - 1}}\) với \(x \ge 0;x \ne 1\)
a) Rút gọn biểu thức H.
b) Tìm tất cả các giá trị của x để \(\sqrt x - H < 0\).
Câu 3:
a) Giải phương trình: \({x^2} - 3x + 2 = 0\).
b) Tìm các giá trị của tham số m để phương trình \({x^2} - 2(m - 1)x + {m^2} = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn hệ thức \({\left( {{x_1} - {x_2}} \right)^2} + 6m = {x_1} - 2{x_2}\).
Câu 4:
Tính giá trị của các biểu thức sau:
a) \(\sqrt 4 + 3\).
b) \(\sqrt 5 + \sqrt {{{\left( {6 - \sqrt 5 } \right)}^2}} \).
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
về câu hỏi!