Câu hỏi:

12/07/2024 5,000

1. Cho Parabol \(\left( P \right):\,\,y =  - {x^2}\) và đường thẳng \(\left( d \right):\,\,y = x - 2\)

a) Vẽ \(\left( P \right)\,\,v{\rm{\`a }}\,\,\left( d \right)\) trên cùng một mặt phẳng tọa độ \[{\rm{Ox}}y\].

b) Viết phương trình đường thẳng \(\left( {d'} \right)\)song song với \(\left( d \right)\) và tiếp xúc với \(\left( P \right)\).

2. Cho phương trình \({x^2} - 4x + m = 0\) (m là tham số)

a) Biết phương trình có một nghiệm bằng \( - 1\). Tính nghiệm còn lại.

b) Xác định m để phương trình có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \(\left( {3{x_1} + 1} \right)\left( {3{x_2} + 1} \right) = 4\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1.

a) \(\left( P \right):\,\,y = - {x^2}\)

1. Cho Parabol (P ) y =  - x^2 và đường thẳng (d): y = x - 2  a) Vẽ ( P ) và (d) trên cùng một mặt phẳng tọa độ Oxy (ảnh 1)

\(\left( d \right):\,\,y = x - 2\)

\(x = 0 \Rightarrow y = - 2:\,\,\,\,\,\,\left( {0; - 2} \right)\)

\(y = 0 \Rightarrow x = 2:\,\,\,\,\,\,\left( {2;0} \right)\)

1. Cho Parabol (P ) y =  - x^2 và đường thẳng (d): y = x - 2  a) Vẽ ( P ) và (d) trên cùng một mặt phẳng tọa độ Oxy (ảnh 2)

b) Phương trình đường thẳng \(\left( {d'} \right)\) có dạng \(y = {\rm{ax}} + b\)

 \(\left( {d'} \right)\)//\(\left( d \right):y = x - 2 \Rightarrow a = 1;\,\,b \ne - 2\)

Phương trình hoành độ giao điểm của \(\left( P \right)\,v{\rm{\`a }}\,\left( {d'} \right)\)là \( - {x^2} = x + b \Leftrightarrow {x^2} + x + b = 0\,\,\left( * \right)\)

PT \(\left( * \right)\) có \(\Delta = 1 - 4b\).

\(\left( P \right)\,v{\rm{\`a }}\,\left( {d'} \right)\)tiếp xúc nhau khi PT \(\left( * \right)\) có nghiệm kép \( \Leftrightarrow \Delta = 0 \Leftrightarrow 1 - 4b = 0 \Leftrightarrow b = \frac{1}{4}\) (nhận).

Vậy PT đường thẳng \(\left( {d'} \right)\,\,l{\rm{\`a }}:\,y = x + \frac{1}{4}\)

2.

a) PT \({x^2} - 4x + m = 0\)có một nghiệm bằng \( - 1\)\( \Rightarrow a - b + c = 0 \Rightarrow 1 + 4 + m = 0 \Rightarrow m = - 5\).

Nghiệm còn lại của PT là \( - \frac{c}{a} = - \frac{m}{1} = - \frac{{ - 5}}{1} = 5\)

b) ĐK \(\Delta ' = {\left( { - 2} \right)^2} - m \ge 0 \Leftrightarrow m \le 4\)

Áp dụng định lí Vi et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = m\end{array} \right.\)

\(\begin{array}{l}\left( {3{x_1} + 1} \right)\left( {3{x_2} + 1} \right) = 4 \Rightarrow 9{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 1 = 4\\ \Rightarrow 9m + 3.4 + 1 = 4 \Rightarrow m = - 1\,\left( {tm} \right)\end{array}\)

Vậy \(m = - 1\) là giá trị cần tìm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC (AB<AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC.

a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn.

b) Vẽ đường kính AF của đường tròn (O). Chứng minh \(BC = \sqrt {AB.BD}  + \sqrt {AC.CE} \) và AF vuông góc với DE.

c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác BDE. Chứng minh O’  là trung điểm của HF.

d) Tính bán kính đường trò (O’) biết \(BC = 8cm,\,\,DE = 6cm,\,\,{\rm{A}}F = 10cm.\)

Xem đáp án » 13/07/2024 13,956

Câu 2:

Cho hình vuông ABCD.

Cho hình vuông ABCD.  Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích (ảnh 1)

Gọi \({S_1}\) là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. \({S_2}\) là diện tích phần còn lại của hình vuông nằm ngoài hai nửa đường trong nói trên (như hình vẽ trên).Tính \(\frac{{{S_1}}}{{{S_2}}}\).

Xem đáp án » 12/07/2024 5,779

Câu 3:

Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau.

Xem đáp án » 13/07/2024 1,505

Câu 4:

a) Cho biểu thức \(A = \sqrt {16}  - \sqrt {25}  + \sqrt 4 .\) So sánh A với \(\sqrt 2 \)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - y =  - 5\\2x + y = 11\end{array} \right.\)

Xem đáp án » 13/07/2024 1,201
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua