Câu hỏi:

12/07/2024 3,475

Cho hình vuông ABCD.

Cho hình vuông ABCD.  Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích (ảnh 1)

Gọi \({S_1}\) là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. \({S_2}\) là diện tích phần còn lại của hình vuông nằm ngoài hai nửa đường trong nói trên (như hình vẽ trên).Tính \(\frac{{{S_1}}}{{{S_2}}}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD.  Gọi S1 là diện tích phần giao của hai nửa đường tròn đường kính AB và AD. S2 là diện tích (ảnh 2)

Gọi a là cạnh hình vuông ABCD. Ta cm được:

\({S_3} = {S_4} = \frac{{{{\left( {\frac{a}{2}} \right)}^2}.\pi .90}}{{360}} - \frac{1}{2} \cdot {\left( {\frac{a}{2}} \right)^2} = \frac{{{a^2}}}{4}\left( {\frac{\pi }{4} - \frac{1}{2}} \right)\)

\({S_1} = {S_3} + {S_4} = \frac{{{a^2}}}{4}\left( {\frac{\pi }{4} - \frac{1}{2}} \right) + \frac{{{a^2}}}{4}\left( {\frac{\pi }{4} - \frac{1}{2}} \right) = \frac{{{a^2}}}{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right)\)

\({S_2} = \frac{1}{2}{a^2} - \frac{{{a^2}}}{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right) = \frac{{{a^2}}}{2}\left( {\frac{3}{2} - \frac{\pi }{4}} \right)\)

Do đó  \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{{{a^2}}}{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right)}}{{\frac{{{a^2}}}{2}\left( {\frac{3}{2} - \frac{\pi }{4}} \right)}} = \frac{{\pi  - 2}}{{6 - \pi }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC (AB<AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC.

a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn.

b) Vẽ đường kính AF của đường tròn (O). Chứng minh \(BC = \sqrt {AB.BD}  + \sqrt {AC.CE} \) và AF vuông góc với DE.

c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác BDE. Chứng minh O’  là trung điểm của HF.

d) Tính bán kính đường trò (O’) biết \(BC = 8cm,\,\,DE = 6cm,\,\,{\rm{A}}F = 10cm.\)

Xem đáp án » 13/07/2024 11,875

Câu 2:

1. Cho Parabol \(\left( P \right):\,\,y =  - {x^2}\) và đường thẳng \(\left( d \right):\,\,y = x - 2\)

a) Vẽ \(\left( P \right)\,\,v{\rm{\`a }}\,\,\left( d \right)\) trên cùng một mặt phẳng tọa độ \[{\rm{Ox}}y\].

b) Viết phương trình đường thẳng \(\left( {d'} \right)\)song song với \(\left( d \right)\) và tiếp xúc với \(\left( P \right)\).

2. Cho phương trình \({x^2} - 4x + m = 0\) (m là tham số)

a) Biết phương trình có một nghiệm bằng \( - 1\). Tính nghiệm còn lại.

b) Xác định m để phương trình có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \(\left( {3{x_1} + 1} \right)\left( {3{x_2} + 1} \right) = 4\)

Xem đáp án » 12/07/2024 2,910

Câu 3:

Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau.

Xem đáp án » 13/07/2024 1,316

Câu 4:

a) Cho biểu thức \(A = \sqrt {16}  - \sqrt {25}  + \sqrt 4 .\) So sánh A với \(\sqrt 2 \)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x - y =  - 5\\2x + y = 11\end{array} \right.\)

Xem đáp án » 13/07/2024 989

Bình luận


Bình luận