Câu hỏi:
19/06/2022 247Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vẽ đường thẳng d2: 2x – y + 2 = 0. Ta có đường thẳng đi qua hai điểm (0; 2) và (– 1; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 – 0 + 2 > 0 thoả mãn bất phương trình 2x – y + 2 > 0. Vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm là phần nửa mặt phẳng được chia bởi đường thẳng d2 và chứa gốc toạ độ O(0; 0).
Vẽ đường thẳng d1: x + y – 2 = 0. Ta có đường thẳng đi qua hai điểm (0; 2) và (2; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 – 2 < 0 thoả mãn bất phương trình x + y – 2 < 0. Vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm là phần nửa mặt phẳng được chia bởi đường thẳng d1 và chứa gốc toạ độ O(0; 0).
Vậy phần không bị gạch trong hình ở đáp án A biểu diễn miền nghiệm của hệ bất phương trình .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giá trị nhỏ nhất của biết thức F(x; y) = x – 2y với điều kiện là
Câu 2:
Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình là
Câu 3:
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện là
Câu 4:
Phần không bị gạch ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D (không kể bờ) ?
Câu 5:
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình ?
Câu 6:
Câu 7:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận