Câu hỏi:

19/06/2022 810

Biểu thức F = y – x đạt giá trị nhỏ nhất với điều kiện 2x+y2x2y2x+y5x0tại điểm có toạ độ là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Biểu diễn miền nghiệm của hệ bất phương trình 2x+y2x2y2x+y5x0 trên hệ trục tọa độ

Ta vẽ đường thẳng d1: – 2x + y = – 2, đường thẳng d1 đi qua hai điểm (0; – 2) và (1; 0)

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có – 2.0 + 0 = 0 > – 2, điểm O(0; 0) không thoả mãn bất phương trình – 2x + y ≤ – 2, vậy điểm O(0; 0) không thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d1 và không chứa điểm O(0; 0) (kể cả bờ).

Ta vẽ đường thẳng d2: x – 2y = 2, đường thẳng d2 đi qua hai điểm (0; – 1) và (2; 0)

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 – 2.0 = 0 < 2, điểm O(0; 0) thoả mãn bất phương trình x – 2y ≤ 2, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d2 và chứa điểm O(0; 0) (kể cả bờ).

Ta vẽ đường thẳng d3: x + y = 5, đường thẳng d3 đi qua hai điểm (0; 5) và (5; 0)

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 = 0 < 5, điểm O(0; 0) thoả mãn bất phương trình x + y ≤ 5, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d3 và chứa điểm O(0; 0) (kể cả bờ).

Biểu thức F = y – x  đạt giá trị nhỏ nhất với điều kiện (ảnh 1)

Miền nghiệm là phần không bị gạch trong hình dưới đây (kể cả bờ).

Nhận thấy biểu thức F = y – x chỉ đạt giá trị nhỏ nhất tại các điểm A, B hoặc C, với A23;23, B73;83, C(4;1).

Ta có

F(x; y) = y – x suy ra F23;23 = 2323=43 ,

F(x; y) = y – x suy ra F73;83= 8373=13,

F(x; y) = y – x suy ra F(4;1).= 1 – 4 = – 3.

Vậy F = y – x đạt giá trị nhỏ nhất bằng – 3 tại điểm có toạ độ (4; 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phần không bị gạch (không kể bờ) trong hình dưới đây biểu diễn miền nghiệm của bất phương trình

Phần không bị gạch (không kể bờ) trong hình dưới đây biểu diễn miền  (ảnh 1)

Xem đáp án » 19/06/2022 8,700

Câu 2:

Phần không bị gạch (kể cả bờ) trong hình dưới đây biểu diễn miền nghiệm của bất phương trình
Phần không bị gạch (kể cả bờ) trong hình dưới đây biểu diễn miền (ảnh 1)

Xem đáp án » 19/06/2022 4,423

Câu 3:

Phần không bị gạch trong hình vẽ nào trong các hình sau biểu diễn miền nghiệm của hệ bất phương trình x2y<12xy+2>0 

Xem đáp án » 19/06/2022 3,841

Câu 4:

Phần không gạch chéo trong hình dưới đây (kể cả bờ) biểu diễn miền nghiệm của hệ bất phương trình
Phần không gạch chéo trong hình dưới đây (kể cả bờ) biểu diễn miền  (ảnh 1)

Xem đáp án » 19/06/2022 2,635

Câu 5:

Cho hệ 2x+3y<5   (1)x+32y<5   (2). Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì

Xem đáp án » 19/06/2022 1,921

Câu 6:

Phần không bị gạch trong hình nào dưới đây biểu diễn miền nghiệm của hệ bất phương trình xy23x+5y15x0y0.

Xem đáp án » 19/06/2022 1,832

Câu 7:

Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình 2x5y1>02x+y+5>0x+y+1<0

Xem đáp án » 19/06/2022 1,814

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store