Câu hỏi:

13/07/2024 3,051

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh ∆AEB đồng dạng với ∆AFC. Từ đó suy ra AF . AB = AE . AC.

b) Chứng minh: AEF^=ABC^.

c) Cho AE = 3 cm, AB = 6 cm. Chứng minh rằng SABC = 4SAEF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh ∆AEB đồng dạng với ∆AFC. Từ đó suy ra AF . AB = AE . AC. b) Chứng minh: góc AEF= ABC  . c) Cho AE = 3 cm, AB = 6 cm. Chứng minh rằng SABC = 4SAEF. (ảnh 1)

a) Xét ∆AEB và ∆AFC có:

AEB^=AFC^=90o;

EAF^ chung.

Do đó: ∆AEB  ∆AFC (g.g).

Suy ra: AFAC=AEAB hay AF . AB = AE . AC.

b) Xét ∆AEF và ∆ABC có:

EAF^ chung;

AFAC=AEAB (do ABAC=AEAF).      

Do đó: ∆AEF   ∆ABC (c.g.c).

Suy ra: AEF^=ABC^ (hai góc tương ứng).

c) Từ câu b: ∆AEF ∆ABC nên AEAB=36=12.

Suy ra SAEFSABC=AEAB=(12)2=14.

Do đó SABC = 4SAEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là độ dài quãng đường AB (km) (x > 0).

Đổi 1 giờ 10 phút = 76 giờ.

Thời gian xe máy đi hết quãng đường AB là x30 (giờ).

Thời gian ô tô đi nửa đầu quãng đường AB là: x2:40=x80 (giờ).

Vận tốc ô tô trên nửa sau quãng đường AB là: 40 + 5 = 45 (km/h).

Thời gian ô tô đi nửa sau quãng đường AB là: x2:45=x90 (giờ).

Do ô tô đến tỉnh B sớm hơn xe máy 1 giờ 10 phút nên ta có phương trình:

x30=x80+x90+76

24x720=9x720+8x720+840720

 24x = 9x + 8x + 840

 24x – 9x – 8x = 840

 7x = 840

 x = 120 (TMĐK).

Vậy độ dài quãng đường AB là 120 km.

Lời giải

Ta có: ∆ABC  ∆A’B’C’ theo tỷ số đồng dạng k.

Hay ABA'B'=k.

Suy ra ∆A’B’C’  ∆ABC theo tỷ số đồng dạng A'B'AB=1k.

Vậy chọn đáp án A.

Câu 3

Phương trình nào sau đây là phương trình bậc nhất một ẩn?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP