Câu hỏi:

21/06/2022 699

Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác ABC có AB = AC . Trên cạnh AB và AC lấy các điểm D, E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai (ảnh 1)

+ Có: AB = AC, AD = AE (gt)

AB = AD + DB, AC = AE + EC

Suy ra: DB = EC (A đúng)

+ Xét \[\Delta ABE\] và \[\Delta ACD\] có:

AB = AC (gt)

\[\widehat {BAC}\] là góc chung

AE = AD (gt)

\[\Delta ABE = \Delta ACD\] (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (B đúng)

và \(\widehat {{B_1}} = \widehat {{C_1}}\); \(\widehat {AEB} = \widehat {ADC}\) (2 góc tương ứng)

+ Có \[\widehat {ADC} + \widehat {{D_1}} = {180^{\rm{o}}}\] (2 góc kề bù)

\[\widehat {AEB} + \widehat {{E_1}} = {180^{\rm{o}}}\] (2 góc kề bù)

Mà \(\widehat {AEB} = \widehat {ADC}\) (cmt) ⇒ \(\widehat {{D_1}} = \widehat {{E_1}}\)

Xét \[\Delta BDK\] và \[\Delta CEK\] có:

\(\widehat {{B_1}} = \widehat {{C_1}}\) (cmt)

DB = EC (cmt)

\(\widehat {{D_1}} = \widehat {{E_1}}\) (cmt)

\[ \Rightarrow \Delta BDK = \Delta CEK\] (g.c.g)

Suy ra \[BK = KC\] (C đúng; D sai)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Xét \[\Delta ABC\] và \[\Delta MNP\] có:

AB = PN

\(\widehat A = \widehat P\)

AC = PM

Suy ra \[\Delta ABC = \Delta PNM\] (c.g.c)

(Trong đó:

Đỉnh A tương ứng với đỉnh P.

Đỉnh B tương ứng với đỉnh N.

Đỉnh C tương ứng với đỉnh M)

Lời giải

Đáp án đúng là: C

Cho tứ giác ABCD, AB//DC, AD//BC, O là giao của AC và BD. Câu nào sau đây đúng (ảnh 1)

+ Vì

\[AB{\rm{//}}DC\] nên \[\widehat {{A_2}} = \widehat {{C_2}}\]; \[\widehat {{B_1}} = \widehat {{D_1}}\] (2 góc so le trong)

+ Vì \[AD{\rm{//}}BC\] nên \[\widehat {{A_1}} = \widehat {{C_1}}\] (2 góc so le trong)

+ Xét \[\Delta ABC\] và \[\Delta CDA\] có:

\[\widehat {{A_2}} = \widehat {{C_2}}\] (cmt)

AC là cạnh chung

\[\widehat {{C_1}} = \widehat {{A_1}}\] (cmt)

\[ \Rightarrow \Delta ABC = \Delta CDA\] (g.c.g)

Suy ra AB = DC; AD = BC (hai cạnh tương ứng)

(A và B sai)

+ Xét \[\Delta ABO\] và \[\Delta CDO\] có:

\[\widehat {{A_2}} = \widehat {{C_2}}\] (cmt)

AB = DC (cmt)

\[\widehat {{B_1}} = \widehat {{D_1}}\] (cmt)

\[ \Rightarrow \Delta ABO = \Delta CDO\] (g.c.g)

Suy ra OA = OC; OB = OD (2 cạnh tương ứng)

(C đúng, D sai)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP