Câu hỏi:

13/07/2024 4,965

Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Kẻ đường cao AH.

a) Chứng minh: DABC đồng dạng với DHBA.

b) Chứng minh: AH2 = HB . HC.

c) Tính độ dài các cạnh BC, AH.

d) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. Kẻ đường cao AH. a) Chứng minh: ABC đồng dạng với HBA. b) Chứng minh: AH2 = HB . HC. c) Tính độ dài các cạnh BC, AH. d) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE. (ảnh 1)

a) Xét DABC và DHBA có:

BAC^=AHB^=90o 

 chung

Do đó DABC  DHBA (g.g).

b) Chứng minh: AH2 = HB . HC.

Xét DABHDCAH có:

AHB^=AHC^=90o (vì AHBC).

BAH^=ACH^ (cùng phụ CAH^).

Do đó DABH DCAH (g.g).

c) Áp dụng định lý Py-ta-go vào DABC vuông tại A, ta:

BC=AB2+AC2=62+82=10 (cm).

Từ câu a: DABC  DHBA nên: ACHA=BCBA.

Suy ra: HB=AB2BC=6210=3,6 (cm).

Vậy BC = 10 cm; AH = 4,8 cm.

d) Từ câu a: DABC  DHBA nên: ABHB=BCBA.

Suy ra: CAD^=AHC^=90o (cm).

Do đó: HC = BC – HB = 10 – 3,6 = 6,4 (cm).

Xét DACDDHCE có:

CAD^=AHC^=90o

C^1=C^2 (vì CD là tia phân giác của ACB^)

Do đó DACD 

Suy ra SACDSHCE=(ACHC)2=(86,4)2=2516.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba số x, y, z dương và đôi một khác nhau thỏa mãn 1x+1y+1z=0. Tính giá trị của biểu thức: A=yzx2+2yz+xzy2+2xz+xyz2+2xy.

Xem đáp án » 13/07/2024 5,033

Câu 2:

Tính diện tích toàn phần và thể tích của hình lăng trụ đứng đáy là tam giác vuông theo các kích thước ở hình sau:

Tính diện tích toàn phần và thể tích của hình lăng trụ đứng có đáy là tam giác vuông theo các kích thước ở hình sau: (ảnh 1)

Xem đáp án » 13/07/2024 421

Câu 3:

Một bạn học sinh đi học từ nhà đến trường với vận tốc trung bình 4 km/h. Sau khi đi được 23quãng đường, bạn ấy đã tăng vận tốc lên 5 km/h. Tính quãng đường từ nhà đến trường của bạn học sinh đó, biết rằng thời gian bạn ấy đi từ nhà đến trường là 28 phút.

Xem đáp án » 13/07/2024 414

Câu 4:

Giải các phương trình và bất phương trình sau:

a) |x + 5| = 3x + 1;

b) x+65x23<2;

c) x2x+23x2=2(x11)x24

Xem đáp án » 13/07/2024 304

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL