Câu hỏi:

12/07/2024 13,870

Trên mặt phẳng tọa độ Oxy, một vật chuyển động nhanh trên đường tròn có phương trình x2 + y2 = 25. Khi tới vị trí M(3; 4) thì vật bị văng khỏi quỹ đạo tròn và ngay sau đó, trong một khoảng thời gian ngắn bay theo hướng tiếp tuyến của đường tròn. Hỏi trong khoảng thời gian ngắn ngay sau khi văng, vật chuyển động trên đường thẳng nào ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trong khoảng thời gian ngắn sau khi văng tại vị trí M(3; 4), vật chuyển động trên đường thẳng là tiếp tuyến của đường tròn có phương trình x2 + y2 = 25 tại điểm M(3; 4).

Đường tròn (C): x2 + y2 = 25 có tâm O(0; 0), điểm M(3; 4) thuộc đường tròn đó (vì 32 + 42 = 25).

Tiếp tuyến của (C) tại M(3; 4) có vectơ pháp tuyến là \(\overrightarrow {OM} = \left( {3 - 0;4 - 0} \right) = \left( {3;\,4} \right)\), nên có phương trình: 3(x – 3) + 4(y – 4) = 0 hay 3x + 4y – 25 = 0.

Vậy vật chuyển động trên đường thẳng có phương trình 3x + 4y – 25 = 0 trong khoảng thời gian ngắn ngay sau khi văng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: x2 + y2 + 2x – 4y + 4 = 0 x2 + y2 – 2 . (– 1) . x – 2 . 2 . y + 4 = 0.

Các hệ số: a = – 1, b = 2, c = 4.

Khi đó đường tròn (C) có tâm I(– 1; 2).

Do 02 + 22 + 2 . 0 – 4 . 2 + 4 = 0 nên điểm M(0; 2) thuộc (C).

Tiếp tuyến d của (C) tại điểm M(0; 2) có vectơ pháp tuyến \(\overrightarrow {IM} = \left( {0 + 1;\,2 - 2} \right) = \left( {1;0} \right)\), nên có phương trình d: 1(x – 0) + 0(y – 2) = 0 hay d: x = 0.

Lời giải

Hướng dẫn giải

a) Đường tròn có tâm I(– 2; 5) và bán kính R = 7 có phương trình là

(x – (–2))2 + (y – 5)2 = 72 hay (x + 2)2 + (y – 5)2 = 49.

b) Đường tròn có tâm I và đi qua điểm A nên bán kính đường tròn là IA.

Ta có: IA = \(\sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} \)= 5.

Do đó phương trình đường tròn là: (x – 1)2 + (y – (– 2))2 = 52

Hay (x – 1)2 + (y + 2)2 = 25.

c) Đường tròn có đường kính AB thì tâm của đường tròn này là trung điểm của AB.

Tọa độ trung điểm I của AB là I\(\left( {\frac{{\left( { - 1} \right) + \left( { - 3} \right)}}{2};\frac{{\left( { - 3} \right) + 5}}{2}} \right)\) hay I(– 2; 1).

Ta có: AB = \(\sqrt {{{\left( { - 3 - \left( { - 1} \right)} \right)}^2} + \left( {5 - {{\left( { - 3} \right)}^2}} \right)} \) = \(2\sqrt {17} \).

Bán kính của đường tròn đường kính AB là R = AB2=2172=17.

Khi đó phương trình đường tròn đường kính AB là:

x22+y12=172 hay (x + 2)2 + (y – 1)2 = 17.

d) Đường tròn (C) có tâm I(1; 3) và tiếp xúc với đường thẳng ∆: x + 2y + 3 = 0 thì khoảng cách từ tâm I đến ∆ chính bằng bán kính của (C).

Ta có: R = d(I, ∆) = \(\frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{10}}{{\sqrt 5 }} = 2\sqrt 5 \).

Vậy phương trình đường tròn (C) là: x12+y32=252 hay (x – 1)2 + (y – 3)2 = 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP