Câu hỏi:
12/07/2024 25,524
Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm ở vị trí này là:
(2 + sin0°; 4 + cos0°) = (2; 5).
Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm ở vị trí này là:
(2 + sin 180°; 4 + cos 180°) = (2; 3).
b) Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.
Ta có: x = 2 + sin t° và y = 4 + cost°.
Suy ra: x – 2 = sin t° và y – 4 = cost°.
Mà sin2 t° + cos2 t° = 1 (0 ≤ t ≤ 180)
Do đó ta có: (x – 2)2 + (y – 4)2 = 1.
Vậy vật thể chuyển động trên đường tròn có tâm I(2; 4) và bán kính R = 1.
Vị trí ban đầu của vật thể là A(2; 5), vị trí kết thúc của vật thể là B(2; 3).
Ta có nên I là trung điểm của AB
Và .
Do đó vật thể chuyển động trên đường tròn có tâm I(2; 4), bán kính R = 1 và nhận AB làm đường kính.
Khi t thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [– 1; 1]. Do đó 2 + sin t° ∈ [2; 3] và 4 + cos t° ∈ [3; 5].
Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm C(3; 0), bờ AB.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: x2 + y2 + 2x – 4y + 4 = 0 ⇔ x2 + y2 – 2 . (– 1) . x – 2 . 2 . y + 4 = 0.
Các hệ số: a = – 1, b = 2, c = 4.
Khi đó đường tròn (C) có tâm I(– 1; 2).
Do 02 + 22 + 2 . 0 – 4 . 2 + 4 = 0 nên điểm M(0; 2) thuộc (C).
Tiếp tuyến d của (C) tại điểm M(0; 2) có vectơ pháp tuyến \(\overrightarrow {IM} = \left( {0 + 1;\,2 - 2} \right) = \left( {1;0} \right)\), nên có phương trình d: 1(x – 0) + 0(y – 2) = 0 hay d: x = 0.
Lời giải
Hướng dẫn giải
a) Đường tròn có tâm I(– 2; 5) và bán kính R = 7 có phương trình là
(x – (–2))2 + (y – 5)2 = 72 hay (x + 2)2 + (y – 5)2 = 49.
b) Đường tròn có tâm I và đi qua điểm A nên bán kính đường tròn là IA.
Ta có: IA = \(\sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} \)= 5.
Do đó phương trình đường tròn là: (x – 1)2 + (y – (– 2))2 = 52
Hay (x – 1)2 + (y + 2)2 = 25.
c) Đường tròn có đường kính AB thì tâm của đường tròn này là trung điểm của AB.
Tọa độ trung điểm I của AB là I\(\left( {\frac{{\left( { - 1} \right) + \left( { - 3} \right)}}{2};\frac{{\left( { - 3} \right) + 5}}{2}} \right)\) hay I(– 2; 1).
Ta có: AB = \(\sqrt {{{\left( { - 3 - \left( { - 1} \right)} \right)}^2} + \left( {5 - {{\left( { - 3} \right)}^2}} \right)} \) = \(2\sqrt {17} \).
Bán kính của đường tròn đường kính AB là R = .
Khi đó phương trình đường tròn đường kính AB là:
hay (x + 2)2 + (y – 1)2 = 17.
d) Đường tròn (C) có tâm I(1; 3) và tiếp xúc với đường thẳng ∆: x + 2y + 3 = 0 thì khoảng cách từ tâm I đến ∆ chính bằng bán kính của (C).
Ta có: R = d(I, ∆) = \(\frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{10}}{{\sqrt 5 }} = 2\sqrt 5 \).
Vậy phương trình đường tròn (C) là: hay (x – 1)2 + (y – 3)2 = 20.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.