Câu hỏi:

12/07/2024 11,182

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).

a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.

b) Tìm quỹ đạo chuyển động của vật thể.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm ở vị trí này là:

(2 + sin0°; 4 + cos0°) = (2; 5).

Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm ở vị trí này là:

(2 + sin 180°; 4 + cos 180°) = (2; 3).

b) Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.

Ta có: x = 2 + sin t° và y = 4 + cost°.

Suy ra: x – 2 = sin t° và y – 4 = cost°.

Mà sin2+ cos2 = 1     (0 ≤ t ≤ 180)

Do đó ta có: (x – 2)2 + (y – 4)2 = 1.

Vậy vật thể chuyển động trên đường tròn có tâm I(2; 4) và bán kính R = 1.

Vị trí ban đầu của vật thể là A(2; 5), vị trí kết thúc của vật thể là B(2; 3).

Ta có 2+22=2;  5+32=4 nên I là trung điểm của AB

AB2=222+3522=22=1=R.

Do đó vật thể chuyển động trên đường tròn có tâm I(2; 4), bán kính R = 1 và nhận AB làm đường kính.

Khi t thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [– 1; 1]. Do đó 2 + sin t° [2; 3] và 4 + cos t° [3; 5].

Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm C(3; 0), bờ AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (C): x2 + y2 + 2x – 4y + 4 = 0. Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).

Xem đáp án » 12/07/2024 19,511

Câu 2:

Viết phương trình của đường tròn trong mỗi trường hợp sau:

a) Có tâm I(– 2; 5) và bán kính R = 7;

b) Có tâm I(1; – 2) và đi qua điểm A(– 2; 2);

c) Có đường kính AB, với A(– 1; – 3), B(– 3; 5);

d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x + 2y + 3 = 0.

Xem đáp án » 12/07/2024 18,705

Câu 3:

Trong mặt phẳng tọa độ, cho tam giác ABC, với A(6; – 2), B(4; 2), C(5; –5). Viết phương trình đường tròn ngoại tiếp tam giác đó.

Xem đáp án » 12/07/2024 14,038

Câu 4:

Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng.

a) x2 + y2 + xy + 4x – 2 = 0;

b) x2 + y2 – 2x – 4y + 5 = 0;

c) x2 + y2 + 6x – 8y + 1 = 0.

Xem đáp án » 12/07/2024 8,728

Câu 5:

Bên trong một hồ bơi, người ta dự định thiết kế hai bể sục nửa hình tròn bằng nhau và một bể sục hình tròn (H.7.15a) để người bơi có thể ngồi tựa lưng vào thành các bể sục thư giãn. Hãy tìm bán kính của các bể sục để tổng chu vi của ba bể là 32 m mà tổng diện tích (chiếm hồ bơi) là nhỏ nhất. Trong tính toán, lấy π = 3,14, độ dài tính theo mét và làm tròn tới chữ số thập phân thứ hai.
Media VietJack

Xem đáp án » 12/07/2024 7,746

Câu 6:

B. Bài tập

Tìm tâm và bán kính của đường tròn (x + 3)2 + (y – 3)2 = 36.

Xem đáp án » 12/07/2024 6,143

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store