Câu hỏi:

11/07/2024 4,417

Trong lớp 10T có bốn bạn Tuấn, Hương, Việt, Dung tham gia cuộc thi hùng biện của trường. Hỏi có bao nhiêu cách chọn:

a) Hai bạn phụ trách nhóm từ bốn bạn?

b) Hai bạn phụ trách nhóm, trong đó một bạn làm nhóm trưởng, một bạn làm nhóm phó?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Vì hai bạn có vai trò như nhau nên số cách chọn 2 bạn từ 4 bạn là: 4 . 3 : 2 = 6 (cách) (do chọn bạn thứ nhất trong 4 bạn có 4 cách, sau khi chọn bạn thứ nhất, còn lại 3 bạn, nên chọn bạn thứ hai trong 3 bạn đó thì có 3 cách, hai bạn có vai trò ngang nhau nên ta chia 2 để loại trường hợp trùng).

b) Cách 1: Để chọn 2 bạn phụ trách nhóm, trong đó một bạn làm nhóm trưởng, một bạn làm nhóm phó, ta thực hiện hai công đoạn: chọn 2 bạn và chọn nhóm trưởng hoặc nhóm phó.

+ Chọn 2 bạn trong 4 bạn thì theo câu a, số cách chọn là 6 cách.

+ Sau khi chọn 2 bạn, ta xếp vai trò 1 bạn làm nhóm trưởng, 1 bạn làm nhóm phó thì có 2 cách lựa chọn.

Vậy số cách chọn 2 bạn, trong đó một bạn nhóm trưởng, một bạn nhóm phó là 6 . 2 = 12 cách.

Cách 2: Để chọn 2 bạn phụ trách nhóm, trong đó một bạn làm nhóm trưởng, một bạn làm nhóm phó, ta thực hiện hai công đoạn: chọn 1 bạn làm nhóm trưởng, chọn 1 bạn làm nhóm phó.

+ Chọn 1 bạn làm nhóm trưởng trong 4 bạn: có 4 cách chọn.

+ Sau khi chọn nhóm trưởng, còn lại 3 bạn, chọn 1 bạn làm nhóm phó trong 3 bạn: có 3 cách chọn.

Vậy theo quy tắc nhân, số cách chọn 2 bạn, trong đó một bạn nhóm trưởng, một bạn nhóm phó là 4 . 3 = 12 (cách).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cách 1:

Để lập số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta cần thực hiện 2 công đoạn: chọn chữ số hàng trăm và chọn 2 chữ số hàng chục và hàng đơn vị.

+ Chọn chữ số hàng trăm từ các chữ số 0, 1, 2, 3, 4, chữ số này phải khác 0, nên có 4 cách chọn.

+ Chọn 2 chữ số tiếp theo từ các chữ số 0, 1, 2, 3, 4, hai chữ số này khác nhau và khác chữ số hàng trăm, nên số cách chọn chính là số chỉnh hợp chập 2 của 4. Do đó có \(A_4^2 = 12\) cách chọn.

Vậy theo quy tắc nhân, có 4 . 12 = 48 số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4.

Cách 2:

Mỗi cách lập một bộ gồm 3 chữ số từ tập các chữ số 0, 1, 2, 3, 4 là một chỉnh hợp chập 3 của 5 phần tử, nên số cách lập bộ số là \(A_5^3\) = 60 (cách).

Tuy nhiên, số tự nhiên có 3 chữ số thì chữ số hàng trăm phải khác 0.

Ta lập các số có dạng \(\overline {0ab} \) , thì số cách lập là: \(A_4^2 = 12\) (cách).

Vậy số các số tự nhiên có ba chữ số khác nhau, lập được từ các chữ số 0, 1, 2, 3, 4 là: 60 – 12 = 48 (số).

Lời giải

Hướng dẫn giải

Gọi số có 4 chữ số cần tìm có dạng: \(\overline {abcd} \) và a, b, c, d A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ≠ 0, a ≠ b ≠ c ≠ d.

Để \(\overline {abcd} \) chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d.

+ Trường hợp 1: d = 0.

Chọn a A \ {0}, a có 9 cách chọn.

Chọn 2 số b, c A \ {0; a} và sắp thứ tự chúng, nên có \(A_8^2 = 56\)cách chọn.

Do đó có: 9 . 56 = 504 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 0.

+ Trường hợp 2: d = 5.

Chọn a A \ {0; 5}, a có 8 cách chọn.

Chọn 2 số b, c A \ {5; a} và sắp thứ tự chúng, nên có \(A_8^2 = 56\)cách chọn.

Do đó có: 8 . 56 = 448 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 5.

Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 504 + 448 = 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP