Câu hỏi:
11/07/2024 4,779a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,02)5 để tính giá trị gần đúng của 1,025.
b) Dùng máy tính cầm tay tính giá trị của 1,025 và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có khai triển:
(1 + 0,02)5 = 15 + 5 . 14 . (0,02) + 10 . 13 . (0,02)2 + 10 . 12 . (0,02)3 + 5 . 1 . (0,02)4 + (0,02)5
Do đó: 1,025 = (1 + 0,02)5 ≈ 15 + 5 . 14 . 0,02 = 1,1.
b) Sử dụng máy tính cầm tay ta tính được: 1,025 ≈ 1,104080803
Ta có: ∆ ≈ |1,104080803 – 1,1| = 0,004080803
Sai số tuyệt đối là 0,004080803.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,05)4 để tính giá trị gần đúng của 1,054.
b) Dùng máy tính cầm tay tính giá trị của 1,054 và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Câu 5:
Câu 6:
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%.
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là \(P = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, dùng hai số hạng đầu trong khai triển của (1 + 0,015)5, hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
Câu 7:
B. Bài tập
Khai triển các đa thức:
a) (x – 3)4;
b) (3x – 2y)4;
c) (x + 5)4 + (x – 5)4;
d) (x – 2y)5.
về câu hỏi!