Câu hỏi:
11/07/2024 8,037B – Tự luận
a) Có bao nhiêu cách viết một dãy 5 chữ cái in hoa từ bảng chữ cái tiếng Anh (gồm 26 chữ cái)?
b) Có bao nhiêu cách viết một dãy 5 chữ cái in hoa khác nhau từ bảng chữ cái tiếng Anh (gồm 26 chữ cái)?
Câu hỏi trong đề: Bài tập Cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Vì các chữ cái không cần khác nhau nên chọn mỗi chữ cái có 26 cách chọn.
Vậy số cách viết một dãy 5 chữ cái in hoa từ bảng chữ cái tiếng Anh (gồm 26 chữ cái) là: 26 . 26 . 26 . 26 . 26 = 265 = 11 881 376 (cách).
b) Vì các chữ cái là khác nhau nên mỗi cách chọn 1 dãy gồm 5 chữ cái này là một chỉnh hợp chập 5 của 26 phần tử (vì có sắp thứ tự).
Vậy số cách viết một dãy 5 chữ cái in hoa khác nhau từ bảng chữ cái tiếng Anh (gồm 26 chữ cái) là: \(A_{26}^5\) = 7 893 600 (cách).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.
Vậy có \(A_6^3\) = 120 số có ba chữ số khác nhau thỏa mãn.
b) Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.
Ta có các bộ ba có tổng chia hết cho 3 là: (1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).
Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.
Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 3! = 48 (số).
Lời giải
Hướng dẫn giải
a) Mỗi cách chọn 3 bạn bất kì trong 40 học sinh là một tổ hợp chập 3 của 40 phần tử.
Vậy số cách chọn 3 học sinh tham gia đội thiện nguyện là: \(C_{40}^3\) = 9 880 (cách).
b) Việc chọn 3 học sinh gồm 1 nam và 2 nữ là việc thực hiện liên tiếp 2 công đoạn:
+ Chọn 1 nam từ 25 nam, số cách chọn là: \(C_{25}^1\) = 25 cách.
+ Chọn 2 nữ từ 15 nữ, số cách chọn: \(C_{15}^2\) = 105 cách.
Vậy theo quy tắc nhân số cách chọn 1 nam, 2 nữ cho đội thiện nguyện là: 25 . 105 = 2 625 (cách).
c)
Cách 1: Việc chọn ít nhất 1 nam trong 3 học sinh thì các trường hợp xảy ra là:
+ Trường hợp 1: Chọn 1 nam, 2 nữ.
Theo câu b) có 2 625 cách chọn.
+ Trường hợp 2: Chọn 2 nam, 1 nữ. Tương tự câu b, có \(C_{25}^2.C_{15}^1 = 300.15 = 4500\)(cách chọn).
+ Trường hợp 3: Cả 3 học sinh được chọn đều là nam, có \(C_{25}^3 = 2300\) (cách chọn).
Vì các trường hợp là rời nhau, nên ta áp dụng quy tắc cộng.
Vậy có 2 625 + 4 500 + 2 300 = 9 425 cách chọn thỏa mãn yêu cầu.
Cách 2: Có thể sử dụng phương pháp gián tiếp.
Số cách chọn 3 HS đều là nữ là: (cách).
Vậy số cách chọn 3 bạn mà có ít nhất một nam là: 9 880 – 455 = 9 425 (cách).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)