Câu hỏi:
11/07/2024 19,390Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.
Quảng cáo
Trả lời:
Hướng dẫn giải
Tổng số viên bi trong hộp là 6 + 4 + 2 = 12 (viên bi).
Chọn 6 viên bi trong 12 viên bi thì số cách chọn là: \(C_{12}^6\) = 924 (cách).
Do đó, n(Ω) = 924.
Gọi biến cố A: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”.
Mỗi phần tử của A được hình thành từ ba công đoạn.
+ Công đoạn 1. Chọn 3 viên bi trắng trong 6 viên bi trắng, số cách chọn: \(C_6^3\) = 20.
+ Công đoạn 2. Chọn 2 viên bi đỏ trong 4 viên bi đỏ, số cách: \(C_4^2\) = 6.
+ Công đoạn 3. Chọn 1 viên bi đen trong 2 viên bi đen, số cách: \(C_2^1\) = 2.
Theo quy tắc nhân, tập A có 20 . 6 . 2 = 240 (phần tử) hay n(A) = 240.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Cách 1: Theo Luyện tập 3 trang 85 ta có:
n(Ω) = {GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT} và n(Ω) = 8.
a) Biến cố A: “Con đầu là gái”, do đó A = {GGG; GGT; GTG; GTT}. Suy ra n(A) = 4.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).
b) Biến cố B: “Có ít nhất một người con trai”.
Suy ra biến cố \(\overline B \): “Không có người con trai nào”.
Khi không có người con trai nào, tức cả ba người con đều là gái, do đó \(\overline B \) = {GGG} nên \(n\left( {\overline B } \right) = 1\).
Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).
Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).
Cách 2:
Mỗi người con sẽ là trai hoặc gái, nên 3 người con thì số khả năng xảy ra là: 2 . 2 . 2 = 8, hay n(Ω) = 8.
a) Con đầu là con gái vậy chỉ có 1 cách chọn.
Hai người con sau không phân biệt về giới tính nên có: 2 . 2 = 4 cách chọn.
Do đó, n(A) = 1 . 4 = 4.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\).
b) Biến cố B: “Có ít nhất một người con trai”.
Suy ra biến cố \(\overline B \): “Không có người con trai nào”.
Khi không có người con trai nào, tức cả ba người con đều là gái, nên \(n\left( {\overline B } \right) = 1\).
Do đó, \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}} = \frac{1}{8}\).
Từ đó suy ra \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).
Lời giải
Hướng dẫn giải
Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.
Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:
+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.
(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).
+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.
Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận