Câu hỏi:

13/07/2024 532

Cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d và thỏa mãn b = 3a + c. Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có f(1)=a+b+c+d.

Suy ra  f(1)f(2)=9a3b+3c.

Mà  b=3a+c  suy ra f(1)f(2)=9a33a+c+3c=9a9a3c+3c=0

f(1)=f(2). 

Suy ra   f(1).f(2)=f(1)2=a+b+c+d2.         

Mà a,b,c,d  nên a+b+c+d  hay  a+b+c+d2 là bình phương của một số nguyên. Suy ra điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ  D vẽ DE  BC (E  BC).  Chứng minh DA = DE. c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF > DE. d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC. (ảnh 1)

a) Ta có AB = 6(cm) (gt); AC = 8(cm) (gt) nên

AB2 + AC2 = 62 + 82 =100 (cm) (1)

Mà BC = 10(cm) (gt) nên BC2 = 102 = 100 (cm) (2)

Từ (1) và (2) suy ra AB2 + AC2 = BC2

Xét tam giác ABC có AB2 + AC2 = BC2(chứng minh trên) nên tam giác ABC vuông tại A (Định lí Pytago đảo).                   (1 điểm)

b) Vì BD là phân giác của góc ABC; DA, DE lần lượt là khoảng cách từ D đến AB, BC

Suy ra DA = DE (tính chất tia phân giác của một góc)      (1 điểm)

c) Tam giác ADF vuông tại A nên DF > AD

Lại có AD = DE (chứng minh trên) nên DF > DE             (0,5 điểm)

d) Ta có: (tam giác ABD vuông tại A)

(tam giác EBD vuông tại E)

(BD là tia phân giác của góc ABC)

Do đó:

Lại có  (hai góc đối đỉnh)

Suy ra

Xét tam giác BDF và tam giác BDC có:

BD cạnh chung

(BD là tia phân giác của góc ABC)

(chứng minh trên)

Do đó:  (g.c.g)

 BF = BC suy ra B thuộc đường trung trực FC (3)

Và DF = DC suy ra D thuộc đường trung trực FC (4)

Từ (3) và (4) suy ra BD là đường trung trực của FC.

Lời giải

a, fx = 2x2 3x3 5x + 5x3 x + x2+ 4x + 3 + 4x2

=3x3+5x3+2x2+x2+4x2+5xx+4x+3

=2x3+3x22x+3

gx = 2x2 x3+ 3x + 3x3+ x2 x  9x + 2.=x3+3x3+2x2+x2+3xx9x+2

=2x3+3x27x+2

Ta có: hx = fx  gx=2x3+3x22x+32x3+3x27x+2

=2x3+3x22x+32x33x2+7x2

=2x32x3+3x23x2+2x+7x+32

=5x+1

b)  

Ta có h(x) = 0 hay 5x + 1 = 0

 5x=1x=15

Vậy x=15là nghim ca đa thc h(x).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay