Câu hỏi:

28/06/2022 5,909 Lưu

Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?

A. 4.                       
B. 3.                       
C. 2.                      
D. 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Ta có: \(D = \mathbb{R}\backslash \left\{ { - 2m} \right\}\)\(f'\left( x \right) = \frac{{2m\left( {m + 1} \right) - 4}}{{{{\left( {x + 2m} \right)}^2}}}\).

Để hàm số đã cho nghịch biến trên khoảng \(\left( {0; + \infty } \right)\) thì:

\(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) = \frac{{2m\left( {m + 1} \right) - 4}}{{{{(x + 2m)}^2}}} < 0,{\mkern 1mu} \forall x \in \left( {0; + \infty } \right)}\\{ - 2m \notin \left( {0; + \infty } \right)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2 < m < 1}\\{ - 2m \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2 < m < 1}\\{m \ge 0}\end{array}} \right. \Leftrightarrow 0 \le m < 1\)

\(m \in \mathbb{Z}\) nên \(m = 0\) là giá trị cần tìm. Vậy có 1 giá trị nguyên duy nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\overrightarrow {{u_3}} = \left( {2;1;3} \right).\]                  
B. \[\overrightarrow {{u_1}} = \left( { - 1;2;3} \right).\]                
C. \[\overrightarrow {{u_2}} = \left( {2;1;1} \right).\]                       
D. \[\overrightarrow {{u_4}} = \left( { - 1;2;1} \right).\]

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

A. \[f'\left( 1 \right) = 1\]                              
B. \[f'\left( 1 \right) = \frac{1}{{2\ln 2}}\] 
C. \[f'\left( 1 \right) = \frac{1}{2}\]                     
D. \[f'\left( 1 \right) = \frac{1}{{\ln 2}}\]

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

A. \[ - 18\].             
B. \[ - 2\].              
C. 18.                     
D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{125}}{8}.\]                                
B. \[\frac{{125}}{6}.\] 
C. \[\frac{{125}}{3}.\] 
D. \[\frac{{125}}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[ - 2\].               
B. \[ - 1\].               
C. 2.                       
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 4.                     
B. 1.                       
C. 3.                       
D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP