Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án D
Ta có: \(D = \mathbb{R}\backslash \left\{ { - 2m} \right\}\) và \(f'\left( x \right) = \frac{{2m\left( {m + 1} \right) - 4}}{{{{\left( {x + 2m} \right)}^2}}}\).
Để hàm số đã cho nghịch biến trên khoảng \(\left( {0; + \infty } \right)\) thì:
\(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) = \frac{{2m\left( {m + 1} \right) - 4}}{{{{(x + 2m)}^2}}} < 0,{\mkern 1mu} \forall x \in \left( {0; + \infty } \right)}\\{ - 2m \notin \left( {0; + \infty } \right)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2 < m < 1}\\{ - 2m \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2 < m < 1}\\{m \ge 0}\end{array}} \right. \Leftrightarrow 0 \le m < 1\)
Vì \(m \in \mathbb{Z}\) nên \(m = 0\) là giá trị cần tìm. Vậy có 1 giá trị nguyên duy nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).
Lời giải
Đáp án D
Tập xác định: \(D = \mathbb{R}\).
\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.