Câu hỏi:

29/06/2022 555

Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tùy ý trên cung CB (D khác C và B). Các tia AC, AD cắt Bx theo thứ tự tại E và F.

a. Chứng minh rằng: ∆ABE là tam giác cân

b. Chứng minh rằng: FB2 = FD.FA

c. Chứng minh rằng: CDFE là tứ giác nội tiếp

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tùy ý trên cung CB (D khác C và B). Các tia AC, AD cắt Bx theo thứ tự tại E và F. (ảnh 1)

a. Ta có CAB^=CBA^(hai góc nội tiếp chắn hai cung bằng nhau)

Ta lại có ACB^= 90° (góc nội tiếp chắn nửa đường tròn)

Suy ra tam giác CAB là tam giác vuông cân và CAB^= 45°

Xét tam giác ABE vuông tại B (Bx là tiếp tuyến của (O)) có EAB^= 45°

Dẫn đến AEB^ = 180° − ABE^EAB^= 180 – 90 – 45 = 45° = EAB^

Suy ra tam giác ABE là tam giác vuông cân.

b. Xét ∆ FDB và ∆ FBA có:

AFB^là góc chung

FBA^= ADB^ = 90° (ADB^ là góc nội tiếp chắn nữa đường tròn và Bx là tiếp tuyến của (O))

Suy ra ∆ FDB  ∆ FBA (g.g)

Từ đó suy ra FBFA=FDFB FB2 = FD.FA (đpcm)

c. Từ câu b ta suy ra được: Trong một tam giác vuông thì bình phương cạnh góc vuông bằng tích hình chiếu của nó trên cạnh huyền nhân với cạnh huyền.

Xét tam giác ABF vuông tại B đường cao BD ta có: AB2 = AD.AF

 ABE vuông tại B đường cao BC ta có: AB2 = AC.AE

Suy ra AD.AF = AC.AE ADAE=ACAF

Xét ∆ ACD và ∆ AFE có:

EAF^là góc chung

ADAE=ACAF (chứng minh trên)

Suy ra ∆ ACD  ∆ AFE (c.g.c)

Suy ra CDA^=CEF^ suy ra tứ giác CDFE là tứ giác nội tiếp.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a. Vẽ Parabol: (P): y = x2 và đường thẳng (d): y = 2x + 3 trên cùng mặt phẳng tọa độ

b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính

Xem đáp án » 11/07/2024 13,785

Câu 2:

Một khu vườn hình chữ nhật có chu vi bằng 46m. Nếu tăng chiều dài 5m và giảm chiều rông 3m thì chiều dài gấp 4 lần chiều rộng. Tính diện tích khu vườn hình chữ nhật?

Xem đáp án » 11/07/2024 13,487

Câu 3:

Hệ phương trình {2x+y=1xy=5 có nghiệm là

Xem đáp án » 29/06/2022 4,202

Câu 4:

Giải phương trình 3x2 – 11x + 6 = 0

Xem đáp án » 11/07/2024 2,462

Câu 5:

Phương trình nào sau đây là phương trình bậc nhất hai ẩn?

Xem đáp án » 29/06/2022 1,251

Câu 6:

Cho hình vẽ bên. Biết BOC^=110°, bán kính R = 3cm, độ dài cung BmC bằng

Cho hình vẽ bên. Biết  110°, bán kính R = 3cm, độ dài cung BmC bằng (ảnh 1)

Xem đáp án » 29/06/2022 881

Câu 7:

Cho hệ phương trình (I): {mx+y=52xy=2

Xác định m để nghiệm (x0; y0) của hệ (I) thỏa điều kiện x0 + y0 = 1

Xem đáp án » 11/07/2024 751
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua