Câu hỏi trong đề: Đề kiểm tra giữa học kì 2 môn Toán 9 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Xét biểu thức với x > 1.
Dấu bằng xảy ra khi .
Áp dụng vào biểu thức P ta được:
P ≥ 4.1 + 4.2 + 4.3 = 4 + 8 + 12 = 24 khi a = b = c = 2.
Vậy giá trị nhỏ nhất của biểu thức P là 24 khi và chỉ khi a = b = c = 2.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) x2 + 3x – 4 = 0
Û x2 + 4x – x – 4 = 0
Û x(x + 4) – (x + 4) = 0
Û (x – 1)(x + 4) = 0
Û
Vậy phương trình có tập nghiệm là S = {1; −4}.
b) Điều kiện xác định y – 1 > 0 Û y > 1.
Đặt t = (t > 0) (vì y > 1 nên , do đó )
Ta có hệ phương trình:
Û
Û
Û
Û (thỏa mãn)
Suy ra = 1 Û = 1
Û y – 1 = 1 Û y = 2 (thỏa mãn)
Vậy hệ phương trình đã cho có nghiệm là (2; 2).
Lời giải
a. Với m = 1 phương trình trở thành: x2 – 4x + 1 = 0
Tính ∆ = b2 – 4ac. Phương trình có các hệ số là a = 1; b = −4; c = 1.
∆ = (−4)2 – 4.1.1 = 16 – 4 = 12 > 0.
Do ∆ > 0, áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
x1 = ; x2 = .
Vậy phương trình có tập nghiệm là S = .
b. ∆’ = (b’)2 – ac = (−m – 1)2 – m2.1 = m2 + 2m + 1 – m2 = 2m + 1
Để phương trình có 2 nghiệm phân biệt thì:
∆’ > 0 Û 2m + 1 > 0 Û m > .
Vậy giá trị m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt là m = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.