Câu hỏi:

29/06/2022 351

Cho a, b, c là các số lớn hơn 1. Tìm giá trị nhỏ nhất của biểu thức:

P = a2a1+2b2b1+3c2c1  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét biểu thức  mx2x1 với x > 1.

mx2x1=m(x2x12+2)

=m(x22x+2x1+2)

=m(x22x+1+1x1+2)

=m((x1)2+1x1+2)

=m(x12+1x1+4)

=m(x122x1  .  1x1+1x12)+4m

=m(x11x1)2+4m4m  x>1

Dấu bằng xảy ra khi x1=1x1x=2 .

Áp dụng vào biểu thức P ta được:

P ≥ 4.1 + 4.2 + 4.3 = 4 + 8 + 12 = 24 khi a = b = c = 2.

Vậy giá trị nhỏ nhất của biểu thức P là 24 khi và chỉ khi a = b = c = 2.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) x2 + 3x – 4 = 0

Û x2 + 4x – x – 4 = 0

Û x(x + 4) – (x + 4) = 0

Û (x – 1)(x + 4) = 0

Û [x=1x=4

Vậy phương trình có tập nghiệm là S = {1; −4}.

b) Điều kiện xác định y – 1 > 0 Û y > 1.

Đặt t =  1y1(t > 0) (vì y > 1 nên y1>0 , do đó t=1y1>0 )

Ta có hệ phương trình:

{3x2t=42xt=3 

Û  {3x2t=42x3=t

Û  {3x2(2x3)=4t=2x3

Û{x=2t=2x3

Û {x=2t=1  (thỏa mãn)

Suy ra  1y1= 1 Û  y1= 1

Û y – 1 = 1 Û y = 2 (thỏa mãn)

Vậy hệ phương trình đã cho có nghiệm là (2; 2).

Lời giải

a. Với m = 1 phương trình trở thành: x2 – 4x + 1 = 0

Tính ∆ = b2 – 4ac. Phương trình có các hệ số là a = 1; b = −4; c = 1.

∆ = (−4)2 – 4.1.1 = 16 – 4 = 12 > 0.

Do ∆ > 0, áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:

x1 = 4+122.1=2+3 ; x2 = 4122.1=23 .

Vậy phương trình có tập nghiệm là S = {2+3;23} .

b. ∆’ = (b’)2 – ac = (−m – 1)2 – m2.1 = m2 + 2m + 1 – m2 = 2m + 1

Để phương trình có 2 nghiệm phân biệt thì:

∆’ > 0 Û 2m + 1 > 0 Û m > 12  .

Vậy giá trị m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt là m = 0.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay