Câu hỏi:

13/07/2024 1,851

Để chuẩn bị cho buổi ôn tập giải bài toán bằng cách lập phương trình của lớp 9A, tổ 1 và tổ 2 được giao chuẩn bị bài tập về dạng toán chuyển động. Biết rng nếu cả hai tổ cùng làm thì sau 3 giờ 36 phút giờ sẽ xong, còn nếu tổ 1 làm trong 2 giờ, tổ 2 làm trong 3 giờ thì được 23 công việc. Hỏi nếu mỗi tổ làm một mình thì bao lâu xong công việc

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (công việc) là phần công việc tổ 1 làm được trong 1 giờ (x > 0).

Gọi y (công việc) là phần công việc tổ 2 làm được trong 1 giờ (y > 0).

3 giờ 36 phút = 3,6 giờ.

Nếu cả hai tổ cùng làm thì sau 3 giờ 36 phút giờ sẽ xong nên

3,6x + 3,6y = 1 (1)

Nếu tổ 1 làm trong 2 giờ, tổ 2 làm trong 3 giờ thì được 23công việc nên

2x + 3y = 23 (2)

Từ (1) và (2) ta có hệ phương trình {3,6x+3,6y=12x+3y=23

{3,6x+3,6y=1x=12(233y)

{3,62(233y)+3,6y=1x=12(233y)

{1,8y=0,2x=12(233y)

 

{y=19x=16 (thỏa mãn)

Ta có:

Tổ 1 mỗi giờ làm được 16 công việc nên một mình tổ 1 sẽ hoàn thành công việc trong 6 giờ.

Tổ 2 mỗi giờ làm được 19 công việc nên một mình tổ 2 sẽ hoàn thành công việc trong 9 giờ.

Vậy tổ 1 làm một mình thì xong công việc trong 6 giờ, tổ 2 làm một mình thì xong công việc trong 9 giờ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O; R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại F. a) Chứng minh tứ giác BIEF nội tiếp. b) Chứng minh: AC2 = AI.AB = AE.AF . c) Kẻ đường kính CM của (O); kẻ dây DN vuông góc với FM. Chứng minh CN = DF. d) Gọi giao điểm của CN và DF là K. Chứng minh rằng giao điểm của OK với BC là tâm đường tròn ngoại tiếp tam giác CEF. (ảnh 1)

a) Ta có: EIB^= 90° (vì CI AB)

EFB^= 90° (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác BIEF có EIB^+EFB^= 90° + 90° = 180°

Suy ra tứ giác BIEF nội tiếp.

b) Tam giác ABC có ACB^= 90° (góc nội tiếp chắn nửa đường tròn)

Suy ra ∆ACB vuông tại C

Xét ∆ACB vuông tại C đường cao IC, ta được:

AC2 = AI . AB (1)

Xét ∆ AEI và ∆ ABF có:

FAB^ là góc chung

AEI^=ABF^ (tứ giác BIEF nội tiếp)

Suy ra ∆ AEI  ∆ ABF (g.g)

Từ đó suy ra AEAB=AIAFAE.AF=AB.AI (2)

Từ (1) và (2) suy ra

AC2 = AI.AB = AE.AF (điều phải chứng minh)

c) Ta có CF FM (CFM^ = 90° góc nội tiếp chắn nửa đường tròn)

DN FM (giả thiết)

Suy ra CF // DM

Suy ra tứ giác CFND là hình thang (3)

Ta có CFD^=FDN^ (hai góc so le trong của CF // DN)

Suy ra CD=NF (hai góc nội tiếp bằng nhau)

Û CD+CF=CF+FN

Û DF=CN

FND^=CDN^ (hai góc nội tiếp chắn hai cung bằng nhau) (4)

Từ (3) và (4) suy ra tứ giác CFND là hình thang cân.

Suy ra CN = FD (hai đường chéo của hình thang cân).

d) Ta có K là giao điểm của CN và FD nên:

CK = KF

Mà ta cũng có CO = OF = R.

Suy ra OK là trung trực của CF.

Suy ra tâm đường tròn ngoại tiếp của CEF sẽ thuộc đường thẳng OK (5)

Ta có O là trung điểm CM.

I là trung điểm CD (đường kính vuông góc với dây thì đi qua trung điểm của dây).

Suy ra OI là đường trung bình của ∆DCM.

Suy ra IO // DM.

Suy ra AB // DM.

Đường tròn (O) có dây AB // dây DM suy ra AD=MB

AD+DM=DM+MB

AM=DBAFM^=DCB^

Gọi P là giao điểm của FM và CB.

Xét tứ giác ECFP có ECP^=EFP^

Suy ra tứ giác ECFP nội tiếp.

Tứ giác ECFP nội tiếp có CFP^= 90° (góc nội tiếp chắn nửa đường tròn)

Suy ra CP là đường kính của đường tròn ngoại tiếp tứ giác ECFP.

Suy ra tâm đường tròn ngoại tiếp tứ giác ECFP thuộc CP.

Hay tâm đường tròn ngoại tiếp tam giác CEF thuộc CB (6)

Từ (5) và (6) suy ra tâm đường tròn ngoại tiếp ∆CEF là giao điểm của OK và BC

Lời giải

a) Thay x = 3 vào phương trình đã cho ta được

32 – 2(m – 3).3 + 4m – 16 = 0

9 – 6m + 18 + 4m −16 = 0

11 – 2m = 0

m=112 

Khi m=112 phương trình trở thành

x2 – 2.(1123)x + 4.112 – 16 = 0

x2 – 5x + 6 = 0

x2 – 2x – 3x + 6 = 0

x(x – 2) −3(x – 2) = 0

(x – 2)(x – 3) = 0

[x=2x=3 

Vậy phương trình có tập nghiệm là S = {2; 3}.

b) Ta có: ∆’ = [– (m – 3)]2 – 1.(4m – 16)

= m2 – 6m + 9 − 4m + 16

= m2 −10m + 25 = (m – 5)2.

Vì ∆’ = (m – 5)2 ≥ 0 (đúng với mọi giá trị của m).

Nên phương trình luôn có nghiệm (điều phải chứng minh).

c) Do phương trình luôn có nghiệm, áp dụng định lý Vi-et, ta được:

[x1+x2=ba=2(m3)1=2m6x1.x2=ca=4m161=4m16

 

Trường hợp 1: Phương trình có 1 nghiệm x1 = 0 và một nghiệm âm. Khi đó:

x1.x2 = 0 tương đương 4m – 16 = 0 Û m = 4

Do đó x1 + x2 = x2 = 2m – 6 = 2 (không thỏa mãn)

Trường hợp 2: Phương trình có một nghiệm âm và một nghiệm dương. Khi đó:

x1.x2 < 0 Û 4m – 16 < 0 Û m < 4

Trường hợp 3: Phương trình có hai nghiệm âm. Khi đó:

{x1x2>0x1+x2<0{4m16>02m6<0{m>4m<3 (không tồn tại giá trị m)

Vậy để phương trình có ít nhất một nghiệm âm thì m < 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay