Câu hỏi:
13/07/2024 8,253
Một khu vườn hình chữ nhật có chu vi bằng 68 m. Nếu tăng chiều rộng lên gấp đôi và chiều dài lên gấp ba thì chu vi khu vườn mới là 178 m. Hãy tìm chiều dài, chiều rộng của khu vườn đã cho lúc ban đầu.
Một khu vườn hình chữ nhật có chu vi bằng 68 m. Nếu tăng chiều rộng lên gấp đôi và chiều dài lên gấp ba thì chu vi khu vườn mới là 178 m. Hãy tìm chiều dài, chiều rộng của khu vườn đã cho lúc ban đầu.
Quảng cáo
Trả lời:
Gọi x (m) là chiều rộng của khi vườn lúc đầu (x > 0).
Gọi y (m) là chiều rộng của khi vườn lúc đầu (y > 0).
Khu vườn lúc đầu có chu vi bằng 68 m nên 2x + 2y = 68 (1)
Chiều rộng khu vườn sau khi tăng là 2x (m)
Chiều dài khu vườn sau khi tăng là 3y (m)
Chu vi của khu vườn sau khi tăng là 2.2x + 2.3y = 178 (2)
Từ (1) và (2) ta có hệ phương trình:
(thỏa mãn)
Vậy chiều rộng lúc ban đầu là 13 m và chiều dài lúc ban đầu là 21 m.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Ta có: = 90° (CE ⊥ AB)
= 90° (góc nội tiếp chắn nửa đường tròn)
Xét tứ giác BMFE có += 90° + 90° = 180°
Suy ra tứ giác BMFE nội tiếp.
2) Ta có = 90° (góc nội tiếp chắn nửa đường tròn)
Suy ra AM ⊥ MB
Xét tam giác AKB có:
KE ⊥ AB (giả thiết)
AM ⊥ KB (chứng minh trên)
Mà KE cắt AM tại F suy ra F là trực tâm của ∆AKB.
Suy ra BF ⊥ AK.
Xét ∆ AFE và ∆ KBE có:
= 90° (KE ⊥ AB)
(tứ giác BMFE nội tiếp)
Suy ra ∆AFE ∆KBE (g.g)
Từ đó suy ra (điều phải chứng minh)
3) Xét tam giác AOM có:
OA = OM = R suy ra ∆AOM cân tại O suy ra (1)
Ta có (MI là tiếp tuyến của (O))
(KM ⊥ FM)
Suy ra (2)
Mà ∆AFE ∆KBE suy ra (hai góc tương ứng) (3)
Từ (1) (2) và (3) suy ra
Suy ra tam giác IMK cân tại I suy ra IM = IK (4)
Xét ∆KMF vuông tại M ta có:
Mà (chứng minh trên)
Nên suy ra ∆IMF cân tại I suy ra IM = IF (5)
Từ (4) và (5) suy ra KI = IF (= IM) (điều phải chứng minh)
Lời giải
Ta có nên hệ phương trình luôn có cặp nghiệm (x; y) duy nhất.
1) Khi m = −1 thì (I)
Vậy phương trình có cặp nghiệm là (−1; −3).
2) Thay vào biểu thức x2 + y2 = 10 ta được:
m2 + (m – 2)2 = 10
m2 + m2 − 4m + 4 =10
2m2 − 4m − 6 = 0
m2 − 2m – 3 = 0
m2 − 3m + m – 3 = 0
m(m − 3) + m − 3 = 0
(m + 1)(m – 3) = 0
Vậy m = −1 hoặc m = 3 thì hệ (I) có cặp nghiệm (x; y) duy nhất thỏa mãn: x2 + y2 = 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.