Câu hỏi:

06/07/2022 247

Cho hai tập \({\rm{A = \{ }}x \in \mathbb{R},\,x + 3 < 4 + 2x\)} \({\rm{B = \{ }}x \in \mathbb{R},\,5x - 3 < 4x - 1\} \). Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

\({\rm{A = \{ }}x \in \mathbb{R},\,x > - 1\} \); \({\rm{B = \{ }}x \in \mathbb{R},\,x < 2\} \). Tập cần tìm là \[C = A \cap B\]. Suy ra \[C = {\rm{\{ }}x \in \mathbb{N}, - 1 < x < 2\} \]

Vậy số cần tìm là: 0 và 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

\(A = {\rm{\{ }}{k^2} + 1|k \in \mathbb{Z},\,\left| k \right| \le 2\} \) Ta có \(k \in \mathbb{Z},\,\left| k \right| \le 2\) \[ \Leftrightarrow \] 2 ≤ k ≤ 2

Ta có bảng sau:

k

-2

-1

0

1

2

k2 + 1

5

2

1

2

5

Vậy tập A có 3 phần tử A = {1; 2; 5}

Câu 2

Lời giải

Đáp án đúng là: C

Ta tìm \[{\rm{A}} \cap {\rm{B}} = \emptyset \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2{\rm{a}} \ge 5\\3{\rm{a}} + 1 < 0\end{array} \right.\\{\rm{a}} > - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{\rm{a}} \ge \frac{5}{2}\\{\rm{a}} < - \frac{1}{3}\end{array} \right.\\{\rm{a}} > - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\rm{a}} \ge \frac{5}{2}\\ - 1 < {\rm{a}} < - \frac{1}{3}\end{array} \right.\] \[ \Rightarrow {\rm{A}} \cap {\rm{B}} \ne \emptyset \Leftrightarrow - \frac{1}{3} \le {\rm{a}} < \frac{5}{2}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP